
pySecDec Documentation
Release 1.1

Sophia Borowka Gudrun Heinrich Stephan Jahn
Stephen Jones Matthias Kerner

Johannes Schlenk Tom Zirke

Apr 20, 2017

CONTENTS

1 Installation 3
1.1 Download the Program and Install . 3
1.2 The Geomethod and Normaliz . 3
1.3 Additional Dependencies for Generated c++ Packages . 4

2 Getting Started 5
2.1 A Simple Example . 5
2.2 Evaluating a Loop Integral . 6
2.3 List of Examples . 12

3 Overview 13
3.1 The Algebra Module . 13
3.2 Feynman Parametrization of Loop Integrals . 15
3.3 Sector Decomposition . 18
3.4 Subtraction . 21
3.5 Expansion . 22

4 SecDecUtil 25
4.1 Series . 25
4.2 Deep Apply . 26
4.3 Uncertainties . 27
4.4 Integrand Container . 28
4.5 Integrator . 30

5 Reference Guide 33
5.1 Algebra . 33
5.2 Loop Integral . 40
5.3 Decomposition . 46
5.4 Matrix Sort . 54
5.5 Subtraction . 55
5.6 Expansion . 56
5.7 Code Writer . 57
5.8 Generated C++ Libraries . 61
5.9 Integral Interface . 64
5.10 Miscellaneous . 65

6 References 69

7 Indices and tables 71

Bibliography 73

i

Python Module Index 75

Index 77

ii

pySecDec Documentation, Release 1.1

pySecDec is a toolbox for the calculation of dimensionally regulated parameter integrals using the sector decomposi-
tion approach [BH00]; see also [Hei08], [BHJ+15].

CONTENTS 1

pySecDec Documentation, Release 1.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Download the Program and Install

pySecDec should run fine with both, python 2.7 and python 3 on unix-like systems.

Before you install pySecDec, make sure that you have recent versions of numpy (http://www.numpy.org/) and sympy
(http://www.sympy.org/) installed. Type

$ python -c "import numpy"
$ python -c "import sympy"

to check for their availability.

In case either numpy or sympy are missing on your machine, it is easiest to install them from your package repository.
Alternatively, and in particular if you do not have administrator rights, pip (https://pip.pypa.io/en/stable/) may be used
to perform the installation.

To install pySecDec download and upack the tarball from http://secdec.hepforge.org/. The tarball contains a distribu-
tion of pySecDec and the additional dependencies listed below. Typing

$ make

should build all redistributed packages and display two commands to be added to your .bashrc or .profile.

Note: Parallel build with make -j<number-of-cores> causes trouble on some systems. If make finished
without a message starting with Successfully built “pySecDec” and its dependencies, try again without the -j option.

1.2 The Geomethod and Normaliz

Note: If you are not urgently interested in using the geometric decomposition, you can ignore this section
for the beginning. The instructions below are not essential for a pySecDec installation. You can still install normaliz
after installing pySecDec. All but the geometric decomposition routines work without normaliz.

If you want to use the geometric decomposition module, you need the normaliz [BIR] command line exe-
cutable. The geometric decomposition module is designed for normaliz version 3 - currently versions 3.0.
0, 3.1.0, and 3.1.1 are known to work. We recommend to set your $PATH such that the normaliz executable is
found. Alternatively, you can pass the path to the normaliz executable directly to the functions that need it.

3

http://www.numpy.org/
http://www.sympy.org/
https://pip.pypa.io/en/stable/
http://secdec.hepforge.org/

pySecDec Documentation, Release 1.1

1.3 Additional Dependencies for Generated c++ Packages

The intended main usage of pySecDec is to make it write c++ packages using the functions pySecDec.
code_writer.make_package() and pySecDec.loop_integral.loop_package(). In order to build
these c++ packages, the following additional non-python-based libraries and programs are required:

• CUBA (http://www.feynarts.de/cuba/)

• FORM (http://www.nikhef.nl/~form/)

• SecDecUtil (part of pySecDec, see SedDecUtil), depends on:

– catch (https://github.com/philsquared/Catch)

The functions pySecDec.code_writer.make_package() and pySecDec.loop_integral.
loop_package() can use the external program nauty [BKAP] to find all sector symmetries and therefore
reduce the number of sectors:

• NAUTY (http://pallini.di.uniroma1.it/)

These packages are redistributed with the pySecDec tarball; i.e. you don’t have to install any of them yourself.

4 Chapter 1. Installation

http://www.feynarts.de/cuba/
http://www.nikhef.nl/~form/
https://github.com/philsquared/Catch
http://pallini.di.uniroma1.it/

CHAPTER

TWO

GETTING STARTED

After installation, you should have a folder examples in your main pySecDec directory. Here we describe a few of the
examples available in the examples directory. A full list of examples is given in List of Examples.

2.1 A Simple Example

We first show how to compute a simple dimensionally regulated integral:∫ 1

0

dx

∫ 1

0

dy (x+ y)−2+ε.

To run the example change to the easy directory and run the commands:

$ python generate_easy.py
$ make -C easy
$ python integrate_easy.py

This will evaluate and print the result of the integral:

Numerical Result: + (1.00015897181235158e+00 +/- 4.03392522752491021e-03)*eps^-1 + (3.
↪→06903035514056399e-01 +/- 2.82319349818329918e-03) + O(eps)
Analytic Result: + (1.000000)*eps^-1 + (0.306853) + O(eps)

The file generate_easy.py defines the integral and calls pySecDec to perform the sector decomposition. When
run it produces the directory easy which contains the code required to numerically evaluate the integral. The make
command builds this code and produces a library. The file integrate_easy.py loads the integral library and
evaluates the integral. The user is encouraged to copy and adapt these files to evaluate their own integrals.

Note: If the user is interested in evaluating a loop integral there are many convenience functions that make this much
easier. Please see Evaluating a Loop Integral for more details.

In generate_easy.py we first import make_package, a function which can decompose, subtract and expand
regulated integrals and write a C++ package to evaluate them. To define our integral we give it a name which will be
used as the name of the output directory and C++ namespace. The integration_variables are declared along with a
list of the name of the regulators. We must specify a list of the requested_orders to which pySecDec should expand
our integral in each regulator. Here we specify requested_orders = [0] which instructs make_package to
expand the integral up to and including O(ε). Next, we declare the polynomials_to_decompose, here sympy syntax
should be used.

5

pySecDec Documentation, Release 1.1

from pySecDec import make_package

make_package(

name = 'easy',
integration_variables = ['x','y'],
regulators = ['eps'],

requested_orders = [0],
polynomials_to_decompose = ['(x+y)^(-2+eps)'],

)

Once the C++ library has been written and built we run integrate_easy.py. Here the library is loaded us-
ing IntegralLibrary . Calling the instance of IntegralLibrary with easy_integral() numerically
evaluates the integral and returns the result.

from pySecDec.integral_interface import IntegralLibrary
from math import log

load c++ library
easy_integral = IntegralLibrary('easy/easy_pylink.so')

integrate
_, _, result = easy_integral()

print result
print('Numerical Result:' + result)
print('Analytic Result:' + ' + (%f)*eps^-1 + (%f) + O(eps)' % (1.0,1.0-log(2.0)))

2.2 Evaluating a Loop Integral

A simple example of the evaluation of a loop integral with pySecDec is box1L. This example computes a one-loop box
with one off-shell leg (with off-shellness s1) and one internal massive line (with mass squared msq), it is shown in
Fig. 2.1.

To run the example change to the box1L directory and run the commands:

$ python box1L.py
$ make -C box1L
$ python integrate_box1L.py

This will print the result of the integral evaluated with Mandelstam invariants s=4.0, t=-0.75 and s1=1.25,
msq=1.0:

leading pole: -0.142868356275422825 - 1.63596224151119965e-6*I +/- (0.
↪→00118022544307414272 + 0.000210769456586696187*I)
subleading pole: 0.639405625715768089 + 1.34277036689902802e-6*I +/- (0.
↪→00650722394065588166 + 0.000971496627153705891*I)
finite part: -0.425514350373418893 + 1.86892487760861536*I +/- (0.
↪→00706834403694714484 + 0.0186497890361357298*I)

The file box1L.py defines the loop integral and calls pySecDec to perform the sector decomposition. When run
it produces the directory box1L which contains the code required to numerically evaluate the integral. The make

6 Chapter 2. Getting Started

pySecDec Documentation, Release 1.1

p1

p2

p3

p4

m

0

0

0

Fig. 2.1: Diagrammatic representation of box1L

2.2. Evaluating a Loop Integral 7

pySecDec Documentation, Release 1.1

command builds this code and produces a library. The file integrate_box1L.py loads the integral library and
evaluates the integral for a specified numerical point.

The content of the python files is described in detail in the following sections. The user is encouraged to copy and
adapt these files to evaluate their own loop integrals.

2.2.1 Defining a Loop Integral

To explain the input format, let us look at box1L.py from the one-loop box example. The first two lines read

import pySecDec as psd
from pySecDec.loop_integral import loop_package

They say that the module pySecDec should be imported with the alias psd, and that the function loop_package
from the module loop_integral is needed.

The following part contains the definition of the loop integral li:

li = psd.loop_integral.LoopIntegralFromGraph(
give adjacency list and indicate whether the propagator connecting the numbered
↪→vertices is massive or massless in the first entry of each list item.
internal_lines = [['m',[1,2]],[0,[2,3]],[0,[3,4]],[0,[4,1]]],
contains the names of the external momenta and the label of the vertex they are
↪→attached to
external_lines = [['p1',1],['p2',2],['p3',3],['p4',4]],

define the kinematics and the names for the kinematic invariants
replacement_rules = [

('p1*p1', 's1'),
('p2*p2', 0),
('p3*p3', 0),
('p4*p4', 0),
('p3*p2', 't/2'),
('p1*p2', 's/2-s1/2'),
('p1*p4', 't/2-s1/2'),
('p2*p4', 's1/2-t/2-s/2'),
('p3*p4', 's/2'),
('m**2', 'msq')

]
)

Here the class LoopIntegralFromGraph is used to Feynman parametrize the loop integral given the adjacency
list. Alternatively, the class LoopIntegralFromPropagators can be used to construct the Feynman integral
given the momentum representation.

The symbols for the kinematic invariants and the masses also need to be given as an ordered list. The ordering is
important as the numerical values assigned to these list elements at the numerical evaluation stage should have the
same order.

Mandelstam_symbols = ['s','t','s1']
mass_symbols = ['msq']

Next, the function loop_package is called. It will create a folder called box1L. It performs the algebraic sector
decomposition steps and writes a package containing the C++ code for the numerical evaluation. The argument
requested_order specifies the order in the regulator to which the integral should be expanded. For a complete list of
possible options see loop_package.

8 Chapter 2. Getting Started

pySecDec Documentation, Release 1.1

loop_package(

name = 'box1L',

loop_integral = li,

real_parameters = Mandelstam_symbols + mass_symbols,

the highest order of the final epsilon expansion --> change this value to whatever
↪→you think is appropriate
requested_order = 0,

the optimization level to use in FORM (can be 0, 1, 2, 3)
form_optimization_level = 2,

the WorkSpace parameter for FORM
form_work_space = '100M',

the method to be used for the sector decomposition
valid values are ``iterative`` or ``geometric`` or ``geometric_ku``
decomposition_method = 'iterative',
if you choose ``geometric[_ku]`` and 'normaliz' is not in your
$PATH, you can set the path to the 'normaliz' command-line
executable here
#normaliz_executable='/path/to/normaliz',

)

2.2.2 Building the C++ Library

After running the python script box1L.py the folder box1L is created and should contain the following files and subdi-
rectories

Makefile Makefile.conf README box1L.hpp codegen integrate_box1L.cpp
↪→pylink src

in the folder box1L, typing

$ make

will create the libraries libbox1L.a and box1L_pylink.so which can be linked to an external program calling
these integrals. The make command can also be run in parallel by using the -j option.

To evaluate the integral numerically a program can call one of these libraries. How to do this interactively or via a
python script is explained in the section Python Interface. Alternatively, a C++ program can be produced as explained
in the section C++ Interface.

2.2.3 Python Interface (basic)

To evaluate the integral for a given numerical point we can use integrate_box1L.py. First it imports the neces-
sary python packages and loads the C++ library.

from __future__ import print_function
from pySecDec.integral_interface import IntegralLibrary
import sympy as sp

2.2. Evaluating a Loop Integral 9

pySecDec Documentation, Release 1.1

load c++ library
box = IntegralLibrary('box1L/box1L_pylink.so')

Next, an integrator is configured for the numerical integration. The full list of available integrators and their options is
given in integral_interface.

choose integrator
box.use_Vegas(flags=2) # ``flags=2``: verbose --> see Cuba manual

Calling the box library numerically evaluates the integral. Note that the order of the real parameters must match
that specified in box1L.py. A list of possible settings for the library, in particular details of how to set the contour
deformation parameters, is given in IntegralLibrary .

integrate
str_integral_without_prefactor, str_prefactor, str_integral_with_prefactor = box(real_
↪→parameters=[4.0, -0.75, 1.25, 1.0])

At this point the string str_integral_with_prefactor contains the full result of the integral and can be
manipulated as required. In the integrate_box1L.py an example is shown how to parse the expression with
sympy and access individual orders of the regulator.

Note: Instead of parsing the result, it can simply be printed with the line
print(str_integral_with_prefactor).

convert complex numbers from c++ to sympy notation
str_integral_with_prefactor = str_integral_with_prefactor.replace(',','+I*')
str_prefactor = str_prefactor.replace(',','+I*')
str_integral_without_prefactor = str_integral_without_prefactor.replace(',','+I*')

convert result to sympy expressions
integral_with_prefactor = sp.sympify(str_integral_with_prefactor.replace('+/-',
↪→'*value+error*'))
integral_with_prefactor_err = sp.sympify(str_integral_with_prefactor.replace('+/-',
↪→'*value+error*'))
prefactor = sp.sympify(str_prefactor)
integral_without_prefactor = sp.sympify(str_integral_without_prefactor.replace('+/-',
↪→'*value+error*'))
integral_without_prefactor_err = sp.sympify(str_integral_without_prefactor.replace('+/
↪→-','*value+error*'))

examples how to access individual orders
print('leading pole:', integral_with_prefactor.coeff('eps',-2).coeff('value'), '+/- (
↪→', integral_with_prefactor_err.coeff('eps',-2).coeff('error'), ')')
print('subleading pole:', integral_with_prefactor.coeff('eps',-1).coeff('value'), '+/-
↪→ (', integral_with_prefactor_err.coeff('eps',-1).coeff('error'), ')')
print('finite part:', integral_with_prefactor.coeff('eps',0).coeff('value'), '+/- (',
↪→integral_with_prefactor_err.coeff('eps',0).coeff('error'), ')')

An example of how to loop over several kinematic points is shown in the example multiple_kinematic_points.py.

10 Chapter 2. Getting Started

pySecDec Documentation, Release 1.1

2.2.4 C++ Interface (advanced)

Usually it is easier to obtain a numerical result using the Python Interface. However, the library can also be used
directly from C++. Inside the generated box1L folder the file integrate_box1L.cpp demonstrates this.

The function print_integral_info shows how to access the important variables of the integral library.

In the main function a kinematic point must be specified by setting the real_parameters variable, for example:

int main()
{
// User Specified Phase-space point

const std::vector<box1L::real_t> real_parameters = {4.0, -0.75, 1.25, 1.0}; //
↪→EDIT: kinematic point specified here

const std::vector<box1L::complex_t> complex_parameters = { };

The name::make_integrands() function returns an secdecutil::IntegrandContainer for each sec-
tor and regulator order:

// Generate the integrands (optimization of the contour if applicable)
const std::vector<box1L::nested_series_t<box1L::integrand_t>> sector_integrands =

↪→box1L::make_integrands(real_parameters, complex_parameters);

The sectors can be added before integration:

// Add integrands of sectors (together flag)
const box1L::nested_series_t<box1L::integrand_t> all_sectors =

↪→std::accumulate(++sector_integrands.begin(), sector_integrands.end(), *sector_
↪→integrands.begin());

An secdecutil::Integrator is constructed and its parameters are set:

// Integrate
secdecutil::cuba::Vegas<box1L::integrand_return_t> integrator;
integrator.flags = 2; // verbose output --> see cuba manual

To numerically integrate the functions the secdecutil::Integrator::integrate() function is applied to
each secdecutil::IntegrandContainer using secdecutil::deep_apply():

const box1L::nested_series_t<secdecutil::UncorrelatedDeviation<box1L::integrand_
↪→return_t>> result_all = secdecutil::deep_apply(all_sectors, integrator.integrate);

The remaining lines print the result:

std::cout << "------------" << std::endl << std::endl;

std::cout << "-- integral info -- " << std::endl;
print_integral_info();
std::cout << std::endl;

std::cout << "-- integral without prefactor -- " << std::endl;
std::cout << result_all << std::endl << std::endl;

std::cout << "-- prefactor -- " << std::endl;
const box1L::nested_series_t<box1L::integrand_return_t> prefactor =

↪→box1L::prefactor(real_parameters, complex_parameters);
std::cout << prefactor << std::endl << std::endl;

std::cout << "-- full result (prefactor*integral) -- " << std::endl;

2.2. Evaluating a Loop Integral 11

pySecDec Documentation, Release 1.1

std::cout << prefactor*result_all << std::endl;
return 0;

}

After editing the real_parameters as described above the C++ program can be build and executed with the
commands

$ make integrate_box1L
$./integrate_box1L

2.3 List of Examples

Here we list the available examples. For more details regarding each example see [PSD17].

easy: a simple parametric integral, described in Section 2.1
box1L: a simple 1-loop, 4-point, 4-propagator integral, described in Section 2.2
triangle2L: a 2-loop, 3-point, 6-propagator diagram, also known as P126
box2L_numerator:a massless planar on-shell 2-loop, 4-point, 7-propagator box with a numerator, either defined as

an inverse propagator box2L_invprop.py or in terms of contracted Lorentz vectors
box2L_contracted_tensor.py

formfac-
tor3L:

a 2-loop, 3-point, 7-propagator integral, demonstrates that the symmetry finder can significantly
reduce the number of sectors

elliptic2L: an integral known to contain elliptic functions
Zbb_vertex_correction:a 2-loop, 3-point, 6-propagator integral without a Euclidean region due to special kinematics
Hyper-
geo5F4:

a general dimensionally regulated parameter integral

4photon1L: calcuation of the 4-photon amplitude, showing how to use pySecDec as an integral library in a
larger context

two_regulators: an integral involving poles in two different regulators.
userde-
fined_cpp:

a collection of examples demonstrating how to combine polynomials to be decomposed with
other user-defined functions

12 Chapter 2. Getting Started

CHAPTER

THREE

OVERVIEW

pySecDec consists of several modules that provide functions and classes for specific purposes. In this overview, we
present only the most important aspects of selected modules. These are exactly the modules necessary to set up the
algebraic computation of a Feynman loop integral requisite for the numerical evaluation. For detailed instruction of a
specific function or class, please be referred to the reference guide.

3.1 The Algebra Module

The algebra module implements a very basic computer algebra system. pySecDec uses both sympy and numpy.
Although sympy in principle provides everything we need, it is way too slow for typical applications. That is because
sympy is completely written in python without making use of any precompiled functions. pySecDec‘s algebra module
uses the in general faster numpy function wherever possible.

3.1.1 Polynomials

Since sector decomposition is an algorithm that acts on polynomials, we start with the key class Polynomial. As
the name suggests, the Polynomial class is a container for multivariate polynomials, i.e. functions of the form:∑

i

Ci
∏
j

x
αij
j

A multivariate polynomial is completely determined by its coefficients Ci and the exponents αij . The Polynomial
class stores these in two arrays:

>>> from pySecDec.algebra import Polynomial
>>> poly = Polynomial([[1,0], [0,2]], ['A', 'B'])
>>> poly
+ (A)*x0 + (B)*x1**2

>>> poly.expolist
array([[1, 0],

[0, 2]])
>>> poly.coeffs
array([A, B], dtype=object)

It is also possible to instantiate the Polynomial by its algebraic representation:

>>> poly2 = Polynomial.from_expression('A*x0 + B*x1**2', ['x0','x1'])
>>> poly2
+ (A)*x0 + (B)*x1**2

>>> poly2.expolist
array([[1, 0],

13

pySecDec Documentation, Release 1.1

[0, 2]])
>>> poly2.coeffs
array([A, B], dtype=object)

Note that the second argument of Polynomial.from_expression() defines the variables xj .

Within the Polynomial class, basic operations are implemented:

>>> poly + 1
+ (1) + (B)*x1**2 + (A)*x0

>>> 2 * poly
+ (2*A)*x0 + (2*B)*x1**2

>>> poly + poly
+ (2*B)*x1**2 + (2*A)*x0

>>> poly * poly
+ (B**2)*x1**4 + (2*A*B)*x0*x1**2 + (A**2)*x0**2

>>> poly ** 2
+ (B**2)*x1**4 + (2*A*B)*x0*x1**2 + (A**2)*x0**2

3.1.2 General Expressions

In order to perform the pySecDec.subtraction and pySecDec.expansion, we have to introduce more
complex algebraic constructs.

General expressions can be entered in a straightforward way:

>>> from pySecDec.algebra import Expression
>>> log_of_x = Expression('log(x)', ['x'])
>>> log_of_x
log(+ (1)*x)

All expressions in the context of this algebra module are based on extending or combining the Polynomials
introduced above. In the example above, log_of_x is a LogOfPolynomial, which is a derived class from
Polynomial:

>>> type(log_of_x)
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> isinstance(log_of_x, Polynomial)
True
>>> log_of_x.expolist
array([[1]])
>>> log_of_x.coeffs
array([1], dtype=object)

We have seen an extension to the Polynomial class, now let us consider a combination:

>>> more_complex_expression = log_of_x * log_of_x
>>> more_complex_expression
(log(+ (1)*x)) * (log(+ (1)*x))

We just introduced the Product of two LogOfPolynomials:

>>> type(more_complex_expression)
<class 'pySecDec.algebra.Product'>

As suggested before, the Product combines two Polynomials. They are accessible through the factors:

14 Chapter 3. Overview

pySecDec Documentation, Release 1.1

>>> more_complex_expression.factors[0]
log(+ (1)*x)
>>> more_complex_expression.factors[1]
log(+ (1)*x)
>>> type(more_complex_expression.factors[0])
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> type(more_complex_expression.factors[1])
<class 'pySecDec.algebra.LogOfPolynomial'>

Important: When working with this algebra module, it is important to understand that everything is based on the
class Polynomial.

To emphasize the importance of the above statement, consider the following code:

>>> expression1 = Expression('x*y', ['x', 'y'])
>>> expression2 = Expression('x*y', ['x'])
>>> type(expression1)
<class 'pySecDec.algebra.Polynomial'>
>>> type(expression2)
<class 'pySecDec.algebra.Polynomial'>
>>> expression1
+ (1)*x*y

>>> expression2
+ (y)*x

Although expression1 and expression2 are mathematically identical, they are treated differently by the alge-
bra module. In expression1, both, x and y, are considered as variables of the Polynomial. In contrast, y is
treated as coefficient in expression2:

>>> expression1.expolist
array([[1, 1]])
>>> expression1.coeffs
array([1], dtype=object)
>>> expression2.expolist
array([[1]])
>>> expression2.coeffs
array([y], dtype=object)

The second argument of the function Expression controls how the variables are distributed among the coefficients
and the variables in the underlying Polynomials. Keep that in mind in order to avoid confusion. One can always
check which symbols are considered as variables by asking for the symbols:

>>> expression1.symbols
[x, y]
>>> expression2.symbols
[x]

3.2 Feynman Parametrization of Loop Integrals

The primary purpose of pySecDec is the numerical calculation of loop integrals as they arise in fixed order calcula-
tions in quantum field theories. In the first step of our approach, the loop integral is converted from the momentum
representation to the Feynman parameter representation, see for example [Hei08] (Chapter 3).

3.2. Feynman Parametrization of Loop Integrals 15

pySecDec Documentation, Release 1.1

The module pySecDec.loop_integral implements exactly that conversion. The most basic use is to calculate
the first and the second Symanzik polynomial U and F, respectively, from the propagators of a loop integral.

3.2.1 One Loop Bubble

To calculate U and F of the one loop bubble, type the following commands:

>>> from pySecDec.loop_integral import LoopIntegralFromPropagators
>>> propagators = ['k**2', '(k - p)**2']
>>> loop_momenta = ['k']
>>> one_loop_bubble = LoopIntegralFromPropagators(propagators, loop_momenta)
>>> one_loop_bubble.U
+ (1)*x0 + (1)*x1

>>> one_loop_bubble.F
+ (-p**2)*x0*x1

The example above among other useful features is also stated in the full documenation of
LoopIntegralFromPropagators() in the reference guide.

3.2.2 Two Loop Planar Box with Numerator

Consider the propagators of the two loop planar box:

>>> propagators = ['k1**2','(k1+p2)**2',
... '(k1-p1)**2','(k1-k2)**2',
... '(k2+p2)**2','(k2-p1)**2',
... '(k2+p2+p3)**2']
>>> loop_momenta = ['k1','k2']

We could now instantiate the LoopIntegral just like before. However, let us consider an additional numerator:

>>> numerator = 'k1(mu)*k1(mu) + 2*k1(mu)*p3(mu) + p3(mu)*p3(mu)' # (k1 + p3) ** 2

In order to unambiguously define the loop integral, we must state which symbols denote the Lorentz_indices
(just mu in this case here) and the external_momenta:

>>> external_momenta = ['p1','p2','p3','p4']
>>> Lorentz_indices=['mu']

With that, we can Feynman parametrize the two loop box with a numerator:

>>> box = LoopIntegralFromPropagators(propagators, loop_momenta, external_momenta,
... numerator=numerator, Lorentz_indices=Lorentz_
↪→indices)
>>> box.U
+ (1)*x3*x6 + (1)*x3*x5 + (1)*x3*x4 + (1)*x2*x6 + (1)*x2*x5 + (1)*x2*x4 + (1)*x2*x3
↪→+ (1)*x1*x6 + (1)*x1*x5 + (1)*x1*x4 + (1)*x1*x3 + (1)*x0*x6 + (1)*x0*x5 + (1)*x0*x4
↪→+ (1)*x0*x3
>>> box.F
+ (-p1**2 - 2*p1*p2 - 2*p1*p3 - p2**2 - 2*p2*p3 - p3**2)*x3*x5*x6 + (-
↪→p3**2)*x3*x4*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x3*x4*x5 + (-p1**2 - 2*p1*p2 - 2*p1*p3
↪→- p2**2 - 2*p2*p3 - p3**2)*x2*x5*x6 + (-p3**2)*x2*x4*x6 + (-p1**2 - 2*p1*p2 -
↪→p2**2)*x2*x4*x5 + (-p1**2 - 2*p1*p2 - 2*p1*p3 - p2**2 - 2*p2*p3 - p3**2)*x2*x3*x6 +
↪→(-p1**2 - 2*p1*p2 - p2**2)*x2*x3*x4 + (-p1**2 - 2*p1*p2 - 2*p1*p3 - p2**2 - 2*p2*p3
↪→- p3**2)*x1*x5*x6 + (-p3**2)*x1*x4*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x1*x4*x5 + (-
↪→p3**2)*x1*x3*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x1*x3*x5 + (-p1**2 - 2*p1*p2 -
↪→p2**2)*x1*x2*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x1*x2*x5 + (-p1**2 - 2*p1*p2 -
↪→p2**2)*x1*x2*x4 + (-p1**2 - 2*p1*p2 - p2**2)*x1*x2*x3 + (-p1**2 - 2*p1*p2 - 2*p1*p3
↪→- p2**2 - 2*p2*p3 - p3**2)*x0*x5*x6 + (-p3**2)*x0*x4*x6 + (-p1**2 - 2*p1*p2 -
↪→p2**2)*x0*x4*x5 + (-p2**2 - 2*p2*p3 - p3**2)*x0*x3*x6 + (-p1**2)*x0*x3*x5 + (-
↪→p2**2)*x0*x3*x4 + (-p1**2)*x0*x2*x6 + (-p1**2)*x0*x2*x5 + (-p1**2)*x0*x2*x4 + (-
↪→p1**2)*x0*x2*x3 + (-p2**2)*x0*x1*x6 + (-p2**2)*x0*x1*x5 + (-p2**2)*x0*x1*x4 + (-
↪→p2**2)*x0*x1*x3

16 Chapter 3. Overview

pySecDec Documentation, Release 1.1

>>> box.numerator
+ (-2*eps*p3(mu)**2 - 2*p3(mu)**2)*U**2 + (-eps + 2)*x6*F + (-eps + 2)*x5*F + (-eps
↪→+ 2)*x4*F + (-eps + 2)*x3*F + (4*eps*p2(mu)*p3(mu) + 4*eps*p3(mu)**2 +
↪→4*p2(mu)*p3(mu) + 4*p3(mu)**2)*x3*x6*U + (-4*eps*p1(mu)*p3(mu) -
↪→4*p1(mu)*p3(mu))*x3*x5*U + (4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x3*x4*U + (-
↪→2*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) - 2*eps*p3(mu)**2 - 2*p2(mu)**2 -
↪→4*p2(mu)*p3(mu) - 2*p3(mu)**2)*x3**2*x6**2 + (4*eps*p1(mu)*p2(mu) +
↪→4*eps*p1(mu)*p3(mu) + 4*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x3**2*x5*x6 + (-
↪→2*eps*p1(mu)**2 - 2*p1(mu)**2)*x3**2*x5**2 + (-4*eps*p2(mu)**2 -
↪→4*eps*p2(mu)*p3(mu) - 4*p2(mu)**2 - 4*p2(mu)*p3(mu))*x3**2*x4*x6 +
↪→(4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x3**2*x4*x5 + (-2*eps*p2(mu)**2 -
↪→2*p2(mu)**2)*x3**2*x4**2 + (-4*eps*p1(mu)*p3(mu) - 4*p1(mu)*p3(mu))*x2*x6*U + (-
↪→4*eps*p1(mu)*p3(mu) - 4*p1(mu)*p3(mu))*x2*x5*U + (-4*eps*p1(mu)*p3(mu) -
↪→4*p1(mu)*p3(mu))*x2*x4*U + (-4*eps*p1(mu)*p3(mu) - 4*p1(mu)*p3(mu))*x2*x3*U +
↪→(4*eps*p1(mu)*p2(mu) + 4*eps*p1(mu)*p3(mu) + 4*p1(mu)*p2(mu) +
↪→4*p1(mu)*p3(mu))*x2*x3*x6**2 + (-4*eps*p1(mu)**2 + 4*eps*p1(mu)*p2(mu) +
↪→4*eps*p1(mu)*p3(mu) - 4*p1(mu)**2 + 4*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x2*x3*x5*x6
↪→+ (-4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2*x3*x5**2 + (8*eps*p1(mu)*p2(mu) +
↪→4*eps*p1(mu)*p3(mu) + 8*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x2*x3*x4*x6 + (-
↪→4*eps*p1(mu)**2 + 4*eps*p1(mu)*p2(mu) - 4*p1(mu)**2 + 4*p1(mu)*p2(mu))*x2*x3*x4*x5
↪→+ (4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x2*x3*x4**2 + (4*eps*p1(mu)*p2(mu) +
↪→4*eps*p1(mu)*p3(mu) + 4*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x2*x3**2*x6 + (-
↪→4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2*x3**2*x5 + (4*eps*p1(mu)*p2(mu) +
↪→4*p1(mu)*p2(mu))*x2*x3**2*x4 + (-2*eps*p1(mu)**2 - 2*p1(mu)**2)*x2**2*x6**2 + (-
↪→4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x5*x6 + (-2*eps*p1(mu)**2 -
↪→2*p1(mu)**2)*x2**2*x5**2 + (-4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x4*x6 + (-
↪→4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x4*x5 + (-2*eps*p1(mu)**2 -
↪→2*p1(mu)**2)*x2**2*x4**2 + (-4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x3*x6 + (-
↪→4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x3*x5 + (-4*eps*p1(mu)**2 -
↪→4*p1(mu)**2)*x2**2*x3*x4 + (-2*eps*p1(mu)**2 - 2*p1(mu)**2)*x2**2*x3**2 +
↪→(4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x1*x6*U + (4*eps*p2(mu)*p3(mu) +
↪→4*p2(mu)*p3(mu))*x1*x5*U + (4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x1*x4*U +
↪→(4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x1*x3*U + (-4*eps*p2(mu)**2 -
↪→4*eps*p2(mu)*p3(mu) - 4*p2(mu)**2 - 4*p2(mu)*p3(mu))*x1*x3*x6**2 +
↪→(4*eps*p1(mu)*p2(mu) - 4*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) + 4*p1(mu)*p2(mu) -
↪→4*p2(mu)**2 - 4*p2(mu)*p3(mu))*x1*x3*x5*x6 + (4*eps*p1(mu)*p2(mu) +
↪→4*p1(mu)*p2(mu))*x1*x3*x5**2 + (-8*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) -
↪→8*p2(mu)**2 - 4*p2(mu)*p3(mu))*x1*x3*x4*x6 + (4*eps*p1(mu)*p2(mu) - 4*eps*p2(mu)**2
↪→+ 4*p1(mu)*p2(mu) - 4*p2(mu)**2)*x1*x3*x4*x5 + (-4*eps*p2(mu)**2 -
↪→4*p2(mu)**2)*x1*x3*x4**2 + (-4*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) - 4*p2(mu)**2 -
↪→4*p2(mu)*p3(mu))*x1*x3**2*x6 + (4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x1*x3**2*x5
↪→+ (-4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1*x3**2*x4 + (4*eps*p1(mu)*p2(mu) +
↪→4*p1(mu)*p2(mu))*x1*x2*x6**2 + (8*eps*p1(mu)*p2(mu) + 8*p1(mu)*p2(mu))*x1*x2*x5*x6
↪→+ (4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x1*x2*x5**2 + (8*eps*p1(mu)*p2(mu) +
↪→8*p1(mu)*p2(mu))*x1*x2*x4*x6 + (8*eps*p1(mu)*p2(mu) + 8*p1(mu)*p2(mu))*x1*x2*x4*x5
↪→+ (4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x1*x2*x4**2 + (8*eps*p1(mu)*p2(mu) +
↪→8*p1(mu)*p2(mu))*x1*x2*x3*x6 + (8*eps*p1(mu)*p2(mu) + 8*p1(mu)*p2(mu))*x1*x2*x3*x5
↪→+ (8*eps*p1(mu)*p2(mu) + 8*p1(mu)*p2(mu))*x1*x2*x3*x4 + (4*eps*p1(mu)*p2(mu) +
↪→4*p1(mu)*p2(mu))*x1*x2*x3**2 + (-2*eps*p2(mu)**2 - 2*p2(mu)**2)*x1**2*x6**2 + (-
↪→4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x5*x6 + (-2*eps*p2(mu)**2 -
↪→2*p2(mu)**2)*x1**2*x5**2 + (-4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x4*x6 + (-
↪→4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x4*x5 + (-2*eps*p2(mu)**2 -
↪→2*p2(mu)**2)*x1**2*x4**2 + (-4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x3*x6 + (-
↪→4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x3*x5 + (-4*eps*p2(mu)**2 -
↪→4*p2(mu)**2)*x1**2*x3*x4 + (-2*eps*p2(mu)**2 - 2*p2(mu)**2)*x1**2*x3**2

We can also generate the output in terms of Mandelstam invariants:

3.2. Feynman Parametrization of Loop Integrals 17

pySecDec Documentation, Release 1.1

>>> replacement_rules = [
... ('p1*p1', 0),
... ('p2*p2', 0),
... ('p3*p3', 0),
... ('p4*p4', 0),
... ('p1*p2', 's/2'),
... ('p2*p3', 't/2'),
... ('p1*p3', '-s/2-t/2')
...]
>>> box = LoopIntegralFromPropagators(propagators, loop_momenta, external_momenta,
... numerator=numerator, Lorentz_indices=Lorentz_
↪→indices,
... replacement_rules=replacement_rules)
>>> box.U
+ (1)*x3*x6 + (1)*x3*x5 + (1)*x3*x4 + (1)*x2*x6 + (1)*x2*x5 + (1)*x2*x4 + (1)*x2*x3
↪→+ (1)*x1*x6 + (1)*x1*x5 + (1)*x1*x4 + (1)*x1*x3 + (1)*x0*x6 + (1)*x0*x5 + (1)*x0*x4
↪→+ (1)*x0*x3
>>> box.F
+ (-s)*x3*x4*x5 + (-s)*x2*x4*x5 + (-s)*x2*x3*x4 + (-s)*x1*x4*x5 + (-s)*x1*x3*x5 + (-
↪→s)*x1*x2*x6 + (-s)*x1*x2*x5 + (-s)*x1*x2*x4 + (-s)*x1*x2*x3 + (-s)*x0*x4*x5 + (-
↪→t)*x0*x3*x6
>>> box.numerator
+ (-eps + 2)*x6*F + (-eps + 2)*x5*F + (-eps + 2)*x4*F + (-eps + 2)*x3*F + (2*eps*t +
↪→2*t)*x3*x6*U + (-4*eps*(-s/2 - t/2) + 2*s + 2*t)*x3*x5*U + (2*eps*t + 2*t)*x3*x4*U
↪→+ (-2*eps*t - 2*t)*x3**2*x6**2 + (2*eps*s + 4*eps*(-s/2 - t/2) - 2*t)*x3**2*x5*x6 +
↪→(-2*eps*t - 2*t)*x3**2*x4*x6 + (2*eps*s + 2*s)*x3**2*x4*x5 + (-4*eps*(-s/2 - t/2) +
↪→2*s + 2*t)*x2*x6*U + (-4*eps*(-s/2 - t/2) + 2*s + 2*t)*x2*x5*U + (-4*eps*(-s/2 - t/
↪→2) + 2*s + 2*t)*x2*x4*U + (-4*eps*(-s/2 - t/2) + 2*s + 2*t)*x2*x3*U + (2*eps*s +
↪→4*eps*(-s/2 - t/2) - 2*t)*x2*x3*x6**2 + (2*eps*s + 4*eps*(-s/2 - t/2) -
↪→2*t)*x2*x3*x5*x6 + (4*eps*s + 4*eps*(-s/2 - t/2) + 2*s - 2*t)*x2*x3*x4*x6 +
↪→(2*eps*s + 2*s)*x2*x3*x4*x5 + (2*eps*s + 2*s)*x2*x3*x4**2 + (2*eps*s + 4*eps*(-s/2 -
↪→ t/2) - 2*t)*x2*x3**2*x6 + (2*eps*s + 2*s)*x2*x3**2*x4 + (2*eps*t + 2*t)*x1*x6*U +
↪→(2*eps*t + 2*t)*x1*x5*U + (2*eps*t + 2*t)*x1*x4*U + (2*eps*t + 2*t)*x1*x3*U + (-
↪→2*eps*t - 2*t)*x1*x3*x6**2 + (2*eps*s - 2*eps*t + 2*s - 2*t)*x1*x3*x5*x6 + (2*eps*s
↪→+ 2*s)*x1*x3*x5**2 + (-2*eps*t - 2*t)*x1*x3*x4*x6 + (2*eps*s + 2*s)*x1*x3*x4*x5 + (-
↪→2*eps*t - 2*t)*x1*x3**2*x6 + (2*eps*s + 2*s)*x1*x3**2*x5 + (2*eps*s +
↪→2*s)*x1*x2*x6**2 + (4*eps*s + 4*s)*x1*x2*x5*x6 + (2*eps*s + 2*s)*x1*x2*x5**2 +
↪→(4*eps*s + 4*s)*x1*x2*x4*x6 + (4*eps*s + 4*s)*x1*x2*x4*x5 + (2*eps*s +
↪→2*s)*x1*x2*x4**2 + (4*eps*s + 4*s)*x1*x2*x3*x6 + (4*eps*s + 4*s)*x1*x2*x3*x5 +
↪→(4*eps*s + 4*s)*x1*x2*x3*x4 + (2*eps*s + 2*s)*x1*x2*x3**2

3.3 Sector Decomposition

The sector decomposition algorithm aims to factorize the polynomials Pi as products of a monomial and a polynomial
with nonzero constant term:

Pi({xj}) 7−→
∏
j

x
αj
j (const+ pi({xj})) .

Factorizing polynomials in that way by expoliting integral transformations is the first step in an algorithm for solving
dimensionally regulated integrals of the form ∫ 1

0

∏
i,j

Pi({xj})βi dxj .

18 Chapter 3. Overview

pySecDec Documentation, Release 1.1

The iterative sector decomposition splits the integral and remaps the integration domain until all polynomials Pi
in all arising integrals (called sectors) have the desired form const + polynomial. An introduction to the sector
decomposition approach can be found in [Hei08].

To demonstrate the pySecDec.decomposition module, we decompose the polynomials

>>> p1 = Polynomial.from_expression('x + A*y', ['x','y','z'])
>>> p2 = Polynomial.from_expression('x + B*y*z', ['x','y','z'])

Let us first focus on the iterative decomposition of p1. In the pySecDec framework, we first have to pack p1 into a
Sector:

>>> from pySecDec.decomposition import Sector
>>> initial_sector = Sector([p1])
>>> print(initial_sector)
Sector:
Jacobian= + (1)
cast=[(+ (1)) * (+ (1)*x + (A)*y)]
other=[]

We can now run the iterative decomposition and take a look at the decomposed sectors:

>>> from pySecDec.decomposition.iterative import iterative_decomposition
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast=[(+ (1)*x) * (+ (1) + (A)*y)]
other=[]

Sector:
Jacobian= + (1)*y
cast=[(+ (1)*y) * (+ (1)*x + (A))]
other=[]

The decomposition of p2 needs two iterations and yields three sectors:

>>> initial_sector = Sector([p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast=[(+ (1)*x) * (+ (1) + (B)*y*z)]
other=[]

Sector:
Jacobian= + (1)*x*y
cast=[(+ (1)*x*y) * (+ (1) + (B)*z)]
other=[]

3.3. Sector Decomposition 19

pySecDec Documentation, Release 1.1

Sector:
Jacobian= + (1)*y*z
cast=[(+ (1)*y*z) * (+ (1)*x + (B))]
other=[]

Note that we declared z as a variable for sector p1 evne though it does not depend on it. This declaration is necessary
if we want to simultaneously decompose p1 and p2:

>>> initial_sector = Sector([p1, p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast=[(+ (1)*x) * (+ (1) + (A)*y), (+ (1)*x) * (+ (1) + (B)*y*z)]
other=[]

Sector:
Jacobian= + (1)*x*y
cast=[(+ (1)*y) * (+ (1)*x + (A)), (+ (1)*x*y) * (+ (1) + (B)*z)]
other=[]

Sector:
Jacobian= + (1)*y*z
cast=[(+ (1)*y) * (+ (1)*x*z + (A)), (+ (1)*y*z) * (+ (1)*x + (B))]
other=[]

We just fully decomposed p1 and p2. In some cases, one may want to bring one polynomial, say p1, into standard
form, but not neccessarily the other. For that purpose, the Sector can take a second argument. In the following
code example, we bring p1 into standard form, apply all transformations to p2 as well, but stop before p2 is fully
decomposed:

>>> initial_sector = Sector([p1], [p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast=[(+ (1)*x) * (+ (1) + (A)*y)]
other=[+ (1)*x + (B)*x*y*z]

Sector:
Jacobian= + (1)*y
cast=[(+ (1)*y) * (+ (1)*x + (A))]
other=[+ (1)*x*y + (B)*y*z]

20 Chapter 3. Overview

pySecDec Documentation, Release 1.1

3.4 Subtraction

In the subtraction, we want to perform those integrations that lead to ε divergencies. The master formula for one
integration variables is

∫ 1

0

x(a−bε)I(x, ε)dx =

|a|−1∑
p=0

1

a+ p+ 1− bε
I(p)(0, ε)

p!
+

∫ 1

0

x(a−bε)R(x, ε)dx

where I(p) is denotes the p-th derivative of I with respect to x. The equation above effectively defines the remainder
term R. All terms on the right hand side of the equation above are constructed to be free of divergencies. For more
details and the generalization to multiple variables, we refer the reader to [Hei08]. In the following, we show how to
use the implementation in pySecDec.

To initialize the subtraction, we first define a factorized expression of the form x(−1−bxε)y(−2−byε)I(x, y, ε):

>>> from pySecDec.algebra import Expression
>>> symbols = ['x','y','eps']
>>> x_monomial = Expression('x**(-1 - b_x*eps)', symbols)
>>> y_monomial = Expression('y**(-2 - b_y*eps)', symbols)
>>> cal_I = Expression('cal_I(x, y, eps)', symbols)

We must pack the monomials into a pySecDec.algebra.Product:

>>> from pySecDec.algebra import Product
>>> monomials = Product(x_monomial, y_monomial)

Although this seems to be to complete input according to the equation above, we are still missing a structure to store
poles in. The function pySecDec.subtraction.integrate_pole_part() is designed to return an iterable
of the same type as the input. That is particularly important since the output of the subtraction of one variable is
the input for the subtraction of the next variable. We will see this iteration later. Initially, we do not have poles yet,
therefore we define a one of the required type:

>>> from pySecDec.algebra import Pow
>>> import numpy as np
>>> polynomial_one = Polynomial(np.zeros([1,len(symbols)], dtype=int), np.array([1]),
↪→symbols, copy=False)
>>> pole_part_initializer = Pow(polynomial_one, -polynomial_one)

pole_part_initializer is of type pySecDec.algebra.Pow and has -polynomial_one in the expo-
nent. We initialize the base with polynomial_one; i.e. a one packed into a polynomial. The function pySecDec.
subtraction.integrate_pole_part() populates the base with factors of bε when poles arise.

We are now ready to build the subtraction_initializer - the pySecDec.algebra.Product to be
passed into pySecDec.subtraction.integrate_pole_part().

>>> from pySecDec.subtraction import integrate_pole_part
>>> subtraction_initializer = Product(monomials, pole_part_initializer, cal_I)
>>> x_subtracted = integrate_pole_part(subtraction_initializer, 0)

The second argument of pySecDec.subtraction.integrate_pole_part() specifies to which variable we
want to apply the master formula, here we choose x. First, remember that the x monomial is a dimensionally regulated
x−1. Therefore, the sum collapses to only one term and we have two terms in total. Each term corresponds to one
entry in the list x_subtracted:

>>> len(x_subtracted)
2

3.4. Subtraction 21

pySecDec Documentation, Release 1.1

x_subtracted has the same structure as our input. The first factor of each term stores the remaining monomials:

>>> x_subtracted[0].factors[0]
((+ (1))**(+ (-b_x)*eps + (-1))) * ((+ (1)*y)**(+ (-b_y)*eps + (-2)))
>>> x_subtracted[1].factors[0]
((+ (1)*x)**(+ (-b_x)*eps + (-1))) * ((+ (1)*y)**(+ (-b_y)*eps + (-2)))

The second factor stores the ε poles. There is an epsilon pole in the first term, but still none in the second:

>>> x_subtracted[0].factors[1]
(+ (-b_x)*eps) ** (+ (-1))
>>> x_subtracted[1].factors[1]
(+ (1)) ** (+ (-1))

The last factor catches everything that is not covered by the first two fields:

>>> x_subtracted[0].factors[2]
(cal_I(+ (0), + (1)*y, + (1)*eps))
>>> x_subtracted[1].factors[2]
(cal_I(+ (1)*x, + (1)*y, + (1)*eps)) + ((+ (-1)) * (cal_I(+ (0), + (1)*y, +
↪→(1)*eps)))

We have now performed the subtraction for x. Because in and output have a similar structure, we can easily perform
the subtraction for y as well:

>>> x_and_y_subtracted = []
>>> for s in x_subtracted:
... x_and_y_subtracted.extend(integrate_pole_part(s,1))

Alternatively, we can directly instruct pySecDec.subtraction.integrate_pole_part() to perform both
subtractions:

>>> alternative_x_and_y_subtracted = integrate_pole_part(subtraction_initializer,0,1)

In both cases, the result is a list of the terms appearing on the right hand side of the master equation.

3.5 Expansion

The purpose of the expansion module is, as the name suggests, to provide routines to perform a series ex-
pansion. The module basically implements two routines - the Taylor expansion (pySecDec.expansion.
expand_Taylor()) and an expansion of polyrational functions supporting singularities in the expansion variable
(pySecDec.expansion.expand_singular()).

3.5.1 Taylor Expansion

The function pySecDec.expansion.expand_Taylor() implements the ordinary Taylor expansion. It takes
an algebraic expression (in the sense of the algebra module, the index of the expansion variable and the order to which
the expression shall be expanded:

>>> from pySecDec.algebra import Expression
>>> from pySecDec.expansion import expand_Taylor
>>> expression = Expression('x**eps', ['eps'])
>>> expand_Taylor(expression, 0, 2).simplify()
+ (1) + (log(+ (x)))*eps + ((log(+ (x))) * (log(+ (x))) * (+ (1/2)))*eps**2

22 Chapter 3. Overview

pySecDec Documentation, Release 1.1

It is also possible to expand an expression in multiple variables simultaneously:

>>> expression = Expression('x**(eps + alpha)', ['eps', 'alpha'])
>>> expand_Taylor(expression, [0,1], [2,0]).simplify()
+ (1) + (log(+ (x)))*eps + ((log(+ (x))) * (log(+ (x))) * (+ (1/2)))*eps**2

The command above instructs pySecDec.expansion.expand_Taylor() to expand the expression to the
second order in the variable indexed 0 (eps) and to the zeroth order in the variable indexed 1 (alpha).

3.5.2 Laurent Expansion

pySecDec.expansion.expand_singular() Laurent expands polyrational functions.

Its input is more restrictive than for the Taylor expansion. It expects a Product where the factors are either
Polynomials or ExponentiatedPolynomials with exponent = -1:

>>> from pySecDec.expansion import expand_singular
>>> expression = Expression('1/(eps + alpha)', ['eps', 'alpha']).simplify()
>>> expand_singular(expression, 0, 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 241, in

↪→expand_singular
return _expand_and_flatten(product, indices, orders, _expand_singular_step)

File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 209, in _
↪→expand_and_flatten

expansion = recursive_expansion(expression, indices, orders)
File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 198, in

↪→recursive_expansion
expansion = expansion_one_variable(expression, index, order)

File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 82, in _
↪→expand_singular_step

raise TypeError('`product` must be a `Product`')
TypeError: `product` must be a `Product`
>>> expression # ``expression`` is indeed a polyrational function.
(+ (1)*alpha + (1)*eps)**(-1)
>>> type(expression) # It is just not packed in a ``Product`` as ``expand_singular``
↪→expects.
<class 'pySecDec.algebra.ExponentiatedPolynomial'>
>>> from pySecDec.algebra import Product
>>> expression = Product(expression)
>>> expand_singular(expression, 0, 1)
+ ((+ (1)) * ((+ (1)*alpha)**(-1))) + ((+ (-1)) * ((+ (1)*alpha**2)**(-1)))*eps

Like in the Taylor expansion, we can expand simultaneously in multiple parameters. Note, however, that the result
of the Laurent expansion depends on the ordering of the expansion variables. The second argument of pySecDec.
expansion.expand_singular() determines the order of the expansion:

>>> expression = Expression('1/(2*eps) * 1/(eps + alpha)', ['eps', 'alpha']).
↪→simplify()
>>> eps_first = expand_singular(expression, [0,1], [1,1])
>>> eps_first
+ ((+ (1/2)) * ((+ (1))**(-1)))*eps**-1*alpha**-1 + ((+ (-1/2)) * ((+ (1))**(-
↪→1)))*alpha**-2 + ((+ (1)) * ((+ (2))**(-1)))*eps*alpha**-3
>>> alpha_first = expand_singular(expression, [1,0], [1,1])
>>> alpha_first
+ ((+ (1/2)) * ((+ (1))**(-1)))*eps**-2 + ((+ (-1/2)) * ((+ (1))**(-1)))*eps**-
↪→3*alpha

3.5. Expansion 23

pySecDec Documentation, Release 1.1

The expression printed out by our algebra module are quite messy. In order to obtain nicer output, we can convert
these expressions to the slower but more high level sympy:

>>> import sympy as sp
>>> eps_first = expand_singular(expression, [0,1], [1,1])
>>> alpha_first = expand_singular(expression, [1,0], [1,1])
>>> sp.sympify(eps_first)
1/(2*alpha*eps) - 1/(2*alpha**2) + eps/(2*alpha**3)
>>> sp.sympify(alpha_first)
-alpha/(2*eps**3) + 1/(2*eps**2)

24 Chapter 3. Overview

CHAPTER

FOUR

SECDECUTIL

SecDecUtil is a standalone autotools-c++ package, that collects common helper classes and functions needed by the
c++ code generated using loop_package or make_package. Everything defined by the SecDecUtil is put into
the c++ namepace secdecutil.

4.1 Series

A class template for containing (optionally truncated) Laurent series. Multivariate series can be represented as series
of series.

This class overloads the arithmetic operators (+, -, *, /) and the comparator operators (==, !=). A string representa-
tion can be obtained using the << operator. The at(i) and [i] operators return the coefficient of the ith power of
the expansion parameter. Otherwise elements can be accessed identically to std::vector.

template<typename T>
class Series

std::string expansion_parameter
A string representing the expansion parameter of the series (default x)

int get_order_min() const
Returns the lowest order in the series.

int get_order_max() const
Returns the highest order in the series.

bool get_truncated_above() const
Checks whether the series is truncated from above.

bool has_term(int order) const
Checks whether the series has a term at order order.

Series(int order_min, int order_max, std::vector<T> content, bool truncated_above = true,
const std::string expansion_parameter = “x”)

Example:

#include <iostream>
#include <secdecutil/series.hpp>

int main()
{

secdecutil::Series<int> exact(-2,1,{1,2,3,4},false,"eps");
secdecutil::Series<int> truncated(-2,1,{1,2,3,4},true,"eps");
secdecutil::Series<secdecutil::Series<int>> multivariate(1,2,

25

pySecDec Documentation, Release 1.1

{
{-2,-1,{1,2},false,

↪→"alpha"},
{-2,-1,{3,4},false,

↪→"alpha"},
},false,"eps"
);

std::cout << "exact: " << exact << std::endl;
std::cout << "truncated: " << truncated << std::endl;
std::cout << "multivariate: " << multivariate << std::endl << std::endl;

std::cout << "exact + 1: " << exact + 1 << std::endl;
std::cout << "exact * exact: " << exact * exact << std::endl;
std::cout << "exact * truncated: " << exact * truncated << std::endl;
std::cout << "exact.at(-2): " << exact.at(-2) << std::endl;

}

Compile/Run:

$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example

Output:

exact: + (1)*eps^-2 + (2)*eps^-1 + (3) + (4)*eps
truncated: + (1)*eps^-2 + (2)*eps^-1 + (3) + (4)*eps + O(eps^2)
multivariate: + (+ (1)*alpha^-2 + (2)*alpha^-1)*eps + (+ (3)*alpha^-2 + (4)*alpha^-
↪→1)*eps^2

exact + 1: + (1)*eps^-2 + (2)*eps^-1 + (4) + (4)*eps
exact * exact: + (1)*eps^-4 + (4)*eps^-3 + (10)*eps^-2 + (20)*eps^-1 + (25) +
↪→(24)*eps + (16)*eps^2
exact * truncated: + (1)*eps^-4 + (4)*eps^-3 + (10)*eps^-2 + (20)*eps^-1 + O(eps^0)
exact.at(-2): 1

4.2 Deep Apply

A general concept to apply a std::function to a nested data structure. If the applied std::function is not
void then deep_apply() returns a nested data structure of the return values. Currently secdecutil implements this
for std::vector and Series.

This concept allows, for example, the elements of a nested series to be edited without knowing the depth of the nested
structure.

template<typename Tout, typename Tin, template<typename...> class Tnest>
Tnest<Tout> deep_apply(Tnest<Tin> &nest, std::function<Tout)Tin

> &func

Example (complex conjugate a Series):

#include <iostream>
#include <complex>
#include <secdecutil/series.hpp>
#include <secdecutil/deep_apply.hpp>

int main()

26 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.1

{
std::function<std::complex<double>(std::complex<double>)> conjugate =
[] (std::complex<double> element)
{

return std::conj(element);
};

secdecutil::Series<std::complex<double>> u(-1,0,{{1,2},{3,4}},false,"eps");
secdecutil::Series<secdecutil::Series<std::complex<double>>> m(1,1,{{1,1,{{1,2}},

↪→false,"alpha"},},false,"eps");

std::cout << "u: " << u << std::endl;
std::cout << "m: " << m << std::endl << std::endl;

std::cout << "conjugated u: " << secdecutil::deep_apply(u, conjugate) <<
↪→std::endl;

std::cout << "conjugated m: " << secdecutil::deep_apply(m, conjugate) <<
↪→std::endl;
}

Compile/Run:

$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example

Output:

u: + ((1,2))*eps^-1 + ((3,4))
m: + (+ ((1,2))*alpha)*eps

conjugated u: + ((1,-2))*eps^-1 + ((3,-4))
conjugated m: + (+ ((1,-2))*alpha)*eps

4.3 Uncertainties

A class template which implements uncertainty propagation for uncorrelated random variables by overloads of the +,
-, * and partially /. Division by UncorrelatedDeviation is not implemented as it is not always defined. It has
special overloads for std::complex<T>.

Note: Division by UncorrelatedDeviation is not implemented as this operation is not always well defined.
Specifically, it is ill defined in the case that the errors are Gaussian distributed as the expectation value,

E

[
1

X

]
=

∫ ∞
−∞

1

X
p(X) dX,

where

p(X) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
,

is undefined in the Riemann or Lebesgue sense. The rule δ(a/b) = |a/b|
√

(δa/a)2 + (δb/b)2 can not be derived from
the first principles of probability theory.

The rules implemented for real valued error propagation are:

δ(a+ b) =
√

(δa)2 + (δb)2,

4.3. Uncertainties 27

pySecDec Documentation, Release 1.1

δ(a− b) =
√

(δa)2 + (δb)2,

δ(ab) =
√

(δa)2b2 + (δb)2a2 + (δa)2(δb)2.

For complex numbers the above rules are implemented for the real and imaginary parts individually.

template<typename T>
class UncorrelatedDeviation

T value
The expectation value.

T uncertainty
The standard deviation.

Example:

#include <iostream>
#include <complex>
#include <secdecutil/uncertainties.hpp>

int main()
{

secdecutil::UncorrelatedDeviation<double> r(1.,0.5);
secdecutil::UncorrelatedDeviation<std::complex<double>> c({2.,3.},{0.6,0.7});

std::cout << "r: " << r << std::endl;
std::cout << "c: " << c << std::endl << std::endl;

std::cout << "r.value: " << r.value << std::endl;
std::cout << "r.uncertainty: " << r.uncertainty << std::endl;
std::cout << "r + c: " << r + c << std::endl;
std::cout << "r * c: " << r * c << std::endl;
std::cout << "r / 3.0: " << r / 3. << std::endl;
// std::cout << "1. / r: " << 1. / r << std::endl; // ERROR
// std::cout << "c / r: " << c / r << std::endl; // ERROR

}

Compile/Run:

$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example

Output:

r: 1 +/- 0.5
c: (2,3) +/- (0.6,0.7)

r.value: 1
r.uncertainty: 0.5
r + c: (3,3) +/- (0.781025,0.7)
r * c: (2,3) +/- (1.20416,1.69189)
r / 3.0: 0.333333 +/- 0.166667

4.4 Integrand Container

A class template for containing integrands. It stores the number of integration variables and the integrand as a
std::function.

28 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.1

This class overloads the arithmetic operators (+, -, *, /).

template<typename T, typename ...Args>
class IntegrandContainer

int number_of_integration_variables
The number of integration variables that the integrand depends on.

std::function<T(Args...)> integrand
The integrand function.

Example (add two IntegrandContainer and evaluate one point):

#include <iostream>
#include <secdecutil/integrand_container.hpp>

int main()
{

using input_t = const double * const;
using return_t = double;

std::function<return_t(input_t)> f1 = [] (input_t x) { return 2*x[0]; };
secdecutil::IntegrandContainer<return_t,input_t> c1(1,f1);

std::function<return_t(input_t)> f2 = [] (input_t x) { return x[0]*x[1]; };
secdecutil::IntegrandContainer<return_t,input_t> c2(2,f2);

secdecutil::IntegrandContainer<return_t,input_t> c3 = c1 + c2;
const double point[]{1.0,2.0};

std::cout << "c1.number_of_integration_variables: " << c1.number_of_integration_
↪→variables << std::endl;

std::cout << "c2.number_of_integration_variables: " << c2.number_of_integration_
↪→variables << std::endl << std::endl;

std::cout << "c3.number_of_integration_variables: " << c3.number_of_integration_
↪→variables << std::endl;

std::cout << "c3.integrand(point): " << c3.integrand(point) <<
↪→std::endl;
}

Compile/Run:

$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example

Output:

c1.number_of_integration_variables: 1
c2.number_of_integration_variables: 2

c3.number_of_integration_variables: 2
c3.integrand(point): 4

4.4. Integrand Container 29

pySecDec Documentation, Release 1.1

4.5 Integrator

A base class template from which integrator implementations inherit. It defines the minimal API available for all
integrators.

template<typename return_t, typename input_t>
class Integrator

bool together
(Only available if return_t is a std::complex type) If true after each call of the func-
tion both the real and imaginary parts are passed to the underlying integrator. If false after
each call of the function only the real or imaginary part is passed to the underlying integrator.
For some adaptive integrators considering the real and imaginary part of a complex function
separately can improve the sampling. Default: false.

UncorrelatedDeviation<return_t> integrate(const IntegrandContainer<return_t, input_t
const *const >&)

Integrates the IntegrandContainer and returns the value and uncertainty as an
UncorrelatedDeviation.

4.5.1 Cuba

Currently we wrap the following Cuba integrators:

• Vegas

• Suave

• Divonne

• Cuhre

The Cuba integrators all implement:

• epsrel - The desired relative accuracy for the numerical evaluation. Default: 0.01.

• epsabs - The desired absolute accuracy for the numerical evaluation. Default: 1e-7.

• flags - Sets the Cuba verbosity flags. The flags=2 means that the Cuba input parameters and the
result after each iteration are written to the log file of the numerical integration. Default: 0.

• seed - The seed used to generate random numbers for the numerical integration with Cuba. Default: 0.

• mineval - The number of evaluations which should at least be done before the numerical integrator
returns a result. Default: 0.

• maxeval - The maximal number of evaluations to be performed by the numerical integrator. Default:
1000000.

The available integrator specific parameters and their default values are:

Vegas Suave Divonne Cuhre
nstart (1000) nnew (1000) key1 (2000) key (0)
nincrease (500) nmin (10) key2 (1)
nbatch (500) flatness (25.0) key3 (1)

maxpass (4)
border (0.0)
maxchisq (1.0)
mindeviation (0.15)

30 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.1

For the description of these more specific parameters we refer to the Cuba manual.

4.5.2 Examples

Integrate Real Function with Cuba Vegas

Example:

#include <iostream>
#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/cuba.hpp>

int main()
{

using input_t = const double * const;
using return_t = double;

secdecutil::cuba::Vegas<return_t> integrator;
integrator.epsrel = 1e-4;
integrator.maxeval = 1e7;

secdecutil::IntegrandContainer<return_t,input_t> c(2, [] (input_t x) { return
↪→x[0]*x[1]; });

secdecutil::UncorrelatedDeviation<return_t> result = integrator.integrate(c);

std::cout << "result: " << result << std::endl;
}

Compile/Run:

$ c++ -I${SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++11 example.cpp -o
↪→example -lcuba -lm && ./example

Output:

result: 0.250002 +/- 2.4515e-05

Integrate Complex Function with Cuba Vegas

Example:

#include <iostream>
#include <complex>
#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/cuba.hpp>

int main()
{

using input_t = const double * const;
using return_t = std::complex<double>;

secdecutil::cuba::Vegas<return_t> integrator;
std::function<return_t(input_t)> f = [] (input_t x) { return return_t{x[0],x[1]};

↪→};

4.5. Integrator 31

pySecDec Documentation, Release 1.1

secdecutil::IntegrandContainer<return_t,input_t> c(2,f);

integrator.together = false; // integrate real and imaginary part separately
↪→(default)

secdecutil::UncorrelatedDeviation<return_t> result_separate = integrator.
↪→integrate(c);

integrator.together = true; // integrate real and imaginary part simultaneously
secdecutil::UncorrelatedDeviation<return_t> result_together = integrator.

↪→integrate(c);

std::cout << "result_separate: " << result_separate << std::endl;
std::cout << "result_together: " << result_together << std::endl;

}

Compile/Run:

$ c++ -I${SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++11 example.cpp -o
↪→example -lcuba -lm && ./example

Output:

result_separate: (0.499889,0.500284) +/- (0.00307225,0.00305688)
result_together: (0.499924,0.500071) +/- (0.00357737,0.00357368)

32 Chapter 4. SecDecUtil

CHAPTER

FIVE

REFERENCE GUIDE

This section describes all public functions and classes in pySecDec.

5.1 Algebra

Implementation of a simple computer algebra system.

class pySecDec.algebra.ExponentiatedPolynomial(expolist, coeffs, exponent=1, polysym-
bols=’x’, copy=True)

Like Polynomial, but with a global exponent. polynomialexponent

Parameters

• expolist – iterable of iterables; The variable’s powers for each term.

• coeffs – iterable; The coefficients of the polynomial.

• exponent – object, optional; The global exponent.

• polysymbols – iterable or string, optional; The symbols to be used for the polynomial
variables when converted to string. If a string is passed, the variables will be consecutively
numbered.

For example: expolist=[[2,0],[1,1]] coeffs=[”A”,”B”]

– polysymbols=’x’ (default) <-> “A*x0**2 + B*x0*x1”

– polysymbols=[’x’,’y’] <-> “A*x**2 + B*x*y”

• copy – bool; Whether or not to copy the expolist, the coeffs, and the exponent.

Note: If copy is False, it is assumed that the expolist, the coeffs and the exponent have
the correct type.

copy()
Return a copy of a Polynomial or a subclass.

derive(index)
Generate the derivative by the parameter indexed index.

Parameters index – integer; The index of the paramater to derive by.

simplify()
Apply the identity <something>**0 = 1 or <something>**1 = <something> or 1**<something> = 1 if
possible, otherwise call the simplify method of the base class. Convert exponent to symbol if possible.

33

pySecDec Documentation, Release 1.1

pySecDec.algebra.Expression(expression, polysymbols, follow_functions=False)
Convert a sympy expression to an expression in terms of this module.

Parameters

• expression – string or sympy expression; The expression to be converted

• polysymbols – iterable of strings or sympy symbols; The symbols to be stored as
expolists (see Polynomial) where possible.

• follow_functions – bool, optional (default = False); If true, return the converted
expression and a list of Function that occur in the expression.

class pySecDec.algebra.Function(symbol, *arguments, **kwargs)
Symbolic function that can take care of parameter transformations. It keeps track of all taken derivatives: When
derive() is called, save the multiindex of the taken derivative.

The derivative multiindices are the keys in the dictionary self.derivative_tracks. The values are lists
with two elements: Its first element is the index to derive the derivative indicated by the multiindex in the second
element by, in order to abtain the derivative indicated by the key:

>>> from pySecDec.algebra import Polynomial, Function
>>> x = Polynomial.from_expression('x', ['x','y'])
>>> y = Polynomial.from_expression('y', ['x','y'])
>>> poly = x**2*y + y**2
>>> func = Function('f', x, y)
>>> ddfuncd0d1 = func.derive(0).derive(1)
>>> func
Function(f(+ (1)*x, + (1)*y), derivative_tracks = {(1, 0): [0, (0, 0)], (1, 1):
↪→[1, (1, 0)]})
>>> func.derivative_tracks
{(1, 0): [0, (0, 0)], (1, 1): [1, (1, 0)]}
>>> func.compute_derivatives(poly)
{(1, 0): + (2)*x*y, (1, 1): + (2)*x}

Parameters

• symbol – string; The symbol to be used to represent the Function.

• arguments – arbitrarily many _Expression; The arguments of the Function.

• copy – bool; Whether or not to copy the arguments.

compute_derivatives(expression=None)
Compute all derivatives of expression that are mentioned in self.derivative_tracks. The
purpose of this function is to avoid computing the same derivatives multiple times.

Parameters expression – _Expression, optional; The expression to compute the deriva-
tives of. If not provided, the derivatives are shown as in terms of the function‘s derivatives
dfd<index>.

copy()
Return a copy of a Function.

derive(index)
Generate the derivative by the parameter indexed index. The derivative of a function with symbol f by
some index is denoted as dfd<index>.

Parameters index – integer; The index of the paramater to derive by.

34 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

replace(expression, index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify()
Simplify the arguments.

class pySecDec.algebra.Log(arg, copy=True)
The (natural) logarithm to base e (2.718281828459..). Store the expressions log(arg).

Parameters

• arg – _Expression; The argument of the logarithm.

• copy – bool; Whether or not to copy the arg.

copy()
Return a copy of a Log.

derive(index)
Generate the derivative by the parameter indexed index.

Parameters index – integer; The index of the paramater to derive by.

replace(expression, index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify()
Apply log(1) = 0.

class pySecDec.algebra.LogOfPolynomial(expolist, coeffs, polysymbols=’x’, copy=True)
The natural logarithm of a Polynomial.

Parameters

• expolist – iterable of iterables; The variable’s powers for each term.

• coeffs – iterable; The coefficients of the polynomial.

• exponent – object, optional; The global exponent.

5.1. Algebra 35

pySecDec Documentation, Release 1.1

• polysymbols – iterable or string, optional; The symbols to be used for the polynomial
variables when converted to string. If a string is passed, the variables will be consecutively
numbered.

For example: expolist=[[2,0],[1,1]] coeffs=[”A”,”B”]

– polysymbols=’x’ (default) <-> “A*x0**2 + B*x0*x1”

– polysymbols=[’x’,’y’] <-> “A*x**2 + B*x*y”

derive(index)
Generate the derivative by the parameter indexed index.

Parameters index – integer; The index of the paramater to derive by.

static from_expression(expression, polysymbols)
Alternative constructor. Construct the LogOfPolynomial from an algebraic expression.

Parameters

• expression – string or sympy expression; The algebraic representation of the polyno-
mial, e.g. “5*x1**2 + x1*x2”

• polysymbols – iterable of strings or sympy symbols; The symbols to be interpreted as
the polynomial variables, e.g. “[’x1’,’x2’]”.

simplify()
Apply the identity log(1) = 0, otherwise call the simplify method of the base class.

class pySecDec.algebra.Polynomial(expolist, coeffs, polysymbols=’x’, copy=True)
Container class for polynomials. Store a polynomial as list of lists counting the powers of the variables. For
example the polynomial “x1**2 + x1*x2” is stored as [[2,0],[1,1]].

Coefficients are stored in a separate list of strings, e.g. “A*x0**2 + B*x0*x1” <-> [[2,0],[1,1]] and [”A”,”B”].

Parameters

• expolist – iterable of iterables; The variable’s powers for each term.

Hint: Negative powers are allowed.

• coeffs – 1d array-like with numerical or sympy-symbolic (see http://www.sympy.org/)
content, e.g. [x,1,2] where x is a sympy symbol; The coefficients of the polynomial.

• polysymbols – iterable or string, optional; The symbols to be used for the polynomial
variables when converted to string. If a string is passed, the variables will be consecutively
numbered.

For example: expolist=[[2,0],[1,1]] coeffs=[”A”,”B”]

– polysymbols=’x’ (default) <-> “A*x0**2 + B*x0*x1”

– polysymbols=[’x’,’y’] <-> “A*x**2 + B*x*y”

• copy – bool; Whether or not to copy the expolist and the coeffs.

Note: If copy is False, it is assumed that the expolist and the coeffs have the correct type.

becomes_zero_for(zero_params)
Return True if the polynomial becomes zero if the parameters passed in zero_params are set to zero.
Otherwise, return False.

36 Chapter 5. Reference Guide

http://www.sympy.org/

pySecDec Documentation, Release 1.1

Parameters zero_params – iterable of integers; The indices of the parameters to be checked.

copy()
Return a copy of a Polynomial or a subclass.

derive(index)
Generate the derivative by the parameter indexed index.

Parameters index – integer; The index of the paramater to derive by.

static from_expression(expression, polysymbols)
Alternative constructor. Construct the polynomial from an algebraic expression.

Parameters

• expression – string or sympy expression; The algebraic representation of the polyno-
mial, e.g. “5*x1**2 + x1*x2”

• polysymbols – iterable of strings or sympy symbols; The symbols to be interpreted as
the polynomial variables, e.g. “[’x1’,’x2’]”.

has_constant_term(indices=None)
Return True if the polynomial can be written as:

const+ ...

Otherwise, return False.

Parameters indices – list of integers or None; The indices of the polysymbols to consider. If
None (default) all indices are taken into account.

replace(expression, index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify(deep=True)
Combine terms that have the same exponents of the variables.

Parameters deep – bool; If True (default) call the simplify method of the coefficients if they
are of type _Expression.

class pySecDec.algebra.Pow(base, exponent, copy=True)
Exponential. Store two expressions A and B to be interpreted as the exponential A**B.

Parameters

• base – _Expression; The base A of the exponential.

• exponent – _Expression; The exponent B.

• copy – bool; Whether or not to copy base and exponent.

copy()
Return a copy of a Pow .

5.1. Algebra 37

pySecDec Documentation, Release 1.1

derive(index)
Generate the derivative by the parameter indexed index.

Parameters index – integer; The index of the paramater to derive by.

replace(expression, index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify()
Apply the identity <something>**0 = 1 or <something>**1 = <something> or 1**<something> = 1 if
possible. Convert to ExponentiatedPolynomial or Polynomial if possible.

class pySecDec.algebra.Product(*factors, **kwargs)
Product of polynomials. Store one or polynomials pi to be interpreted as product

∏
i pi.

Parameters

• factors – arbitrarily many instances of Polynomial; The factors pi.

• copy – bool; Whether or not to copy the factors.

pi can be accessed with self.factors[i].

Example:

p = Product(p0, p1)
p0 = p.factors[0]
p1 = p.factors[1]

copy()
Return a copy of a Product.

derive(index)
Generate the derivative by the parameter indexed index. Return an instance of the optimized
ProductRule.

Parameters index – integer; The index of the paramater to derive by.

replace(expression, index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

38 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify()
If one or more of self.factors is a Product, replace it by its factors. If only one factor is present,
return that factor. Remove factors of one and zero.

class pySecDec.algebra.ProductRule(*expressions, **kwargs)
Store an expression of the form

∑
i

ci
∏
j

∏
k

(
d

dxk

)nijk
fj ({xk})

The main reason for introducing this class is a speedup when calculating derivatives. In particular, this class
implements simplifications such that the number of terms grows less than exponentially (scaling of the naive
implementation of the product rule) with the number of derivatives.

Parameters expressions – arbitrarily many expressions; The expressions fj .

copy()
Return a copy of a ProductRule.

derive(index)
Generate the derivative by the parameter indexed index. Note that this class is particularly designed to hold
derivatives of a product.

Parameters index – integer; The index of the paramater to derive by.

replace(index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify()
Combine terms that have the same derivatives of the expressions.

to_sum()
Convert the ProductRule to Sum

class pySecDec.algebra.Sum(*summands, **kwargs)
Sum of polynomials. Store one or polynomials pi to be interpreted as product

∑
i pi.

Parameters

• summands – arbitrarily many instances of Polynomial; The summands pi.

• copy – bool; Whether or not to copy the summands.

pi can be accessed with self.summands[i].

Example:

5.1. Algebra 39

pySecDec Documentation, Release 1.1

p = Sum(p0, p1)
p0 = p.summands[0]
p1 = p.summands[1]

copy()
Return a copy of a Sum.

derive(index)
Generate the derivative by the parameter indexed index.

Parameters index – integer; The index of the paramater to derive by.

replace(expression, index, value, remove=False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters

• expression – _Expression; The expression to replace the variable.

• index – integer; The index of the variable to be replaced.

• value – number or sympy expression; The value to insert for the chosen variable.

• remove – bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify()
If one or more of self.summands is a Sum, replace it by its summands. If only one summand is present,
return that summand. Remove zero from sums.

5.2 Loop Integral

This module defines routines to Feynman parametrize a loop integral and build a c++ package that numerically inte-
grates over the sector decomposed integrand.

5.2.1 Feynman Parametrization

Routines to Feynman parametrize a loop integral.

class pySecDec.loop_integral.LoopIntegral(*args, **kwargs)
Container class for loop integrals. The main purpose of this class is to convert a loop integral from the momen-
tum representation to the Feynman parameter representation.

It is possible to provide either the graph of the loop integrals as adjacency list, or the propagators.

The Feynman parametrized integral is a product of the following expressions that are accessible as member
properties:

•self.regulator ** self.regulator_power

•self.Gamma_factor

•self.exponentiated_U

•self.exponentiated_F

•self.numerator

40 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

•self.measure,

where self is an instance of either LoopIntegralFromGraph or LoopIntegralFromPropagators.

When inverse propagators or nonnumerical propagator powers are present (see powerlist), some Feyn-
man_parameters drop out of the integral. The variables to integrate over can be accessed as self.
integration_variables.

While self.numerator describes the numerator polynomial generated by tensor numerators or inverse prop-
agators, self.measure contains the monomial associated with the integration measure in the case of propa-
gator powers 6= 1. The Gamma functions in the denominator belonging to the measure, however, are multiplied
to the overall Gamma factor given by self.Gamma_factor. The overall sign (−1)Nν is included in self.
numerator.

See also:

•input as graph: LoopIntegralFromGraph

•input as list of propagators: LoopIntegralFromPropagators

class pySecDec.loop_integral.LoopIntegralFromGraph(internal_lines, external_lines,
replacement_rules=[], Feyn-
man_parameters=’x’, regula-
tor=’eps’, regulator_power=0,
dimensionality=‘4-2*eps’, pow-
erlist=[])

Construct the Feynman parametrization of a loop integral from the graph using the cut construction method.

Example:

>>> from pySecDec.loop_integral import *
>>> internal_lines = [['0',[1,2]], ['m',[2,3]], ['m',[3,1]]]
>>> external_lines = [['p1',1],['p2',2],['-p12',3]]
>>> li = LoopIntegralFromGraph(internal_lines, external_lines)
>>> li.exponentiated_U
(+ (1)*x0 + (1)*x1 + (1)*x2)**(2*eps - 1)
>>> li.exponentiated_F
(+ (m**2)*x2**2 + (2*m**2 - p12**2)*x1*x2 + (m**2)*x1**2 + (m**2 - p1**2)*x0*x2
↪→+ (m**2 - p2**2)*x0*x1)**(-eps - 1)

Parameters

• internal_lines – iterable of internal line specification, consisting of string or sympy
expression for mass and a pair of strings or numbers for the vertices, e.g. [[’m’, [1,2]], [‘0’,
[2,1]]].

• external_lines – iterable of external line specification, consisting of string or sympy
expression for external momentum and a strings or number for the vertex, e.g. [[’p1’, 1],
[’p2’, 2]].

• replacement_rules – iterable of iterables with two strings or sympy expressions, op-
tional; Symbolic replacements to be made for the external momenta, e.g. definition of
Mandelstam variables. Example: [(‘p1*p2’, ‘s’), (‘p1**2’, 0)] where p1 and p2 are ex-
ternal momenta. It is also possible to specify vector replacements, for example [(‘p4’, ‘-
(p1+p2+p3)’)].

• Feynman_parameters – iterable or string, optional; The symbols to be used for the
Feynman parameters. If a string is passed, the Feynman parameter variables will be consec-
utively numbered starting from zero.

5.2. Loop Integral 41

pySecDec Documentation, Release 1.1

• regulator – string or sympy symbol, optional; The symbol to be used for the dimensional
regulator (typically ε or εD)

Note: If you change this symbol, you have to adapt the dimensionality accordingly.

• regulator_power – integer; An additional factor to the numerator.

See also:

LoopIntegral

• dimensionality – string or sympy expression, optional; The dimensionality; typically
4− 2ε, which is the default value.

• powerlist – iterable, optional; The powers of the propergators, possibly dependent on
the regulator. In case of negative powers, the numerator is constructed by taking derivatives
with respect to the corresponding Feynman parameters as explained in Section 3.2.4 of Ref.
[BHJ+15]. If negative powers are combined with a tensor numerator, the derivatives act on
the Feynman-parametrized tensor numerator as well, which leads to a consistent result.

class pySecDec.loop_integral.LoopIntegralFromPropagators(propagators, loop_momenta,
external_momenta=[],
Lorentz_indices=[], numer-
ator=1, metric_tensor=’g’,
replacement_rules=[],
Feynman_parameters=’x’,
regulator=’eps’, reg-
ulator_power=0,
dimensionality=‘4-2*eps’,
powerlist=[])

Construct the Feynman parametrization of a loop integral from the algebraic momentum representation.

See also:

[Hei08], [GKR+11]

Example:

>>> from pySecDec.loop_integral import *
>>> propagators = ['k**2', '(k - p)**2']
>>> loop_momenta = ['k']
>>> li = LoopIntegralFromPropagators(propagators, loop_momenta)
>>> li.exponentiated_U
(+ (1)*x0 + (1)*x1)**(2*eps - 2)
>>> li.exponentiated_F
(+ (-p**2)*x0*x1)**(-eps)

The 1st (U) and 2nd (F) Symanzik polynomials and their exponents can also be accessed independently:

>>> li.U
+ (1)*x0 + (1)*x1
>>> li.F
+ (-p**2)*x0*x1
>>>
>>> li.exponent_U
2*eps - 2
>>> li.exponent_F
-eps

42 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

Parameters

• propagators – iterable of strings or sympy expressions; The propagators, e.g. [’k1**2’,
‘(k1-k2)**2 - m1**2’].

• loop_momenta – iterable of strings or sympy expressions; The loop momenta, e.g.
[’k1’,’k2’].

• external_momenta – iterable of strings or sympy expressions, optional; The external
momenta, e.g. [’p1’,’p2’]. Specifying the external_momenta is only required when a nu-
merator is to be constructed.

See also:

parameter numerator

• Lorentz_indices – iterable of strings or sympy expressions, optional; Symbols to be
used as Lorentz indices in the numerator.

See also:

parameter numerator

• numerator – string or sympy expression, optional; The numerator of the loop inte-
gral. Scalar products must be passed in index notation e.g. “k1(mu)*k2(mu)”. The nu-
merator should be a sum of products of exclusively: * numbers * scalar products (e.g.
“p1(mu)*k1(mu)*p1(nu)*k2(nu)”) * symbols (e.g. “m”)

Examples:

– p1(mu)*k1(mu)*p1(nu)*k2(nu) + 4*s*eps*k1(mu)*k1(mu)

– p1(mu)*(k1(mu) + k2(mu))*p1(nu)*k2(nu)

– p1(mu)*k1(mu)*my_function(eps)

Warning: All Lorentz indices (including the contracted ones and also including
the numbers that have been used) must be explicitly defined using the parameter
Lorentz_indices.

Warning: It is assumed that the numerator is and all its derivatives by the regulator are
finite and defined if ε = 0 is inserted explicitly. In particular, if user defined functions
(like in the example p1(mu)*k1(mu)*my_function(eps)) appear, make sure
that my_function(0) is finite.

Hint: In order to mimic a singular user defined function, use the param-
eter regulator_power. For example, instead of numerator = gamma(eps)
you could enter numerator = eps_times_gamma(eps) in conjunction with
regulator_power = -1.

Hint: It is possible to use numbers as indices, for example
p1(mu)*p2(mu)*k1(nu)*k2(nu) = p1(1)*p2(1)*k1(2)*k2(2).

5.2. Loop Integral 43

pySecDec Documentation, Release 1.1

Hint: The numerator may have uncontracted indices, e.g. k1(mu)*k2(nu).

• metric_tensor – string or sympy symbol, optional; The symbol to be used for the
(Minkowski) metric tensor gµν .

• replacement_rules – iterable of iterables with two strings or sympy expressions, op-
tional; Symbolic replacements to be made for the external momenta, e.g. definition of
Mandelstam variables. Example: [(‘p1*p2’, ‘s’), (‘p1**2’, 0)] where p1 and p2 are ex-
ternal momenta. It is also possible to specify vector replacements, for example [(‘p4’, ‘-
(p1+p2+p3)’)].

• Feynman_parameters – iterable or string, optional; The symbols to be used for the
Feynman parameters. If a string is passed, the Feynman parameter variables will be consec-
utively numbered starting from zero.

• regulator – string or sympy symbol, optional; The symbol to be used for the dimensional
regulator (typically ε or εD)

Note: If you change this symbol, you have to adapt the dimensionality accordingly.

• regulator_power – integer; An additional factor to the numerator.

See also:

LoopIntegral

• dimensionality – string or sympy expression, optional; The dimensionality; typically
4− 2ε, which is the default value.

• powerlist – iterable, optional; The powers of the propergators, possibly dependent on
the regulator. In case of negative powers, the numerator is constructed by taking derivatives
with respect to the corresponding Feynman parameters as explained in Section 3.2.4 of Ref.
[BHJ+15]. If negative powers are combined with a tensor numerator, the derivatives act on
the Feynman-parametrized tensor numerator as well, which leads to a consistent result.

5.2.2 Loop Package

This module contains the function that generates a c++ package.

pySecDec.loop_integral.loop_package(name, loop_integral, requested_order,
real_parameters=[], complex_parameters=[], con-
tour_deformation=True, additional_prefactor=1,
form_optimization_level=2, form_work_space=‘500M’,
decomposition_method=’iterative’, nor-
maliz_executable=’normaliz’, enforce_complex=False,
split=False, ibp_power_goal=-1, use_dreadnaut=True)

Decompose, subtract and expand a Feynman parametrized loop integral. Return it as c++ package.

See also:

This function is a wrapper around pySecDec.code_writer.make_package().

See also:

The generated library is described in Generated C++ Libraries.

Parameters

44 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

• name – string; The name of the c++ namespace and the output directory.

• loop_integral – pySecDec.loop_integral.LoopIntegral; The loop inte-
gral to be computed.

• requested_orders – integer; Compute the expansion in the regulator to this order.

• real_parameters – iterable of strings or sympy symbols, optional; Parameters to be
interpreted as real numbers, e.g. Mandelstam invariants and masses.

• complex_parameters – iterable of strings or sympy symbols, optional; Parameters to
be interpreted as complex numbers. To use the complex mass scheme, define the masses as
complex parameters.

• contour_deformation – bool, optional; Whether or not to produce code for contour
deformation. Default: True.

• additional_prefactor – string or sympy expression, optional; An additional factor
to be multiplied to the loop integral. It may depend on the regulator, the real_parameters,
and the complex_parameters.

• form_optimization_level – integer out of the interval [0,3], optional; The opti-
mization level to be used in FORM. Default: 2.

• form_work_space – string, optional; The FORM WorkSpace. Default: '500M'.

• decomposition_method – string, optional; The strategy for decomposing the polyno-
mials. The following strategies are available:

– ‘iterative’ (default)

– ‘geometric’

– ‘geometric_ku’

Note: For ‘geometric’ and ‘geometric_ku’, the third-party program “normaliz” is needed.
See The Geomethod and Normaliz.

• normaliz_executable – string, optional; The command to run normaliz. normaliz is
only required if decomposition_method is set to ‘geometric’ or ‘geometric_ku’. Default:
‘normaliz’

• enforce_complex – bool, optional; Whether or not the generated integrand functions
should have a complex return type even though they might be purely real. The return type
of the integrands is automatically complex if contour_deformation is True or if there are
complex_parameters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if log(<negative real>) occurs in one of the integrand
functions. However, pySecDec will suggest setting this flag to True in that case. Default:
False

• split – bool, optional; Whether or not to split the integration domain in order to map
singularities from 1 to 0. Set this option to True if you have singularties when one or more
integration variables are one. Default: False

• ibp_power_goal – integer, optional; The power_goal that is forwarded to
integrate_by_parts().

This option controls how the subtraction terms are generated. Setting it to -numpy.inf
disables integrate_by_parts(), while 0 disables integrate_pole_part().

See also:

5.2. Loop Integral 45

pySecDec Documentation, Release 1.1

To generate the subtraction terms, this function first calls integrate_by_parts()
for each integration variable with the give ibp_power_goal. Then
integrate_pole_part() is called.

Default: -1

• use_dreadnaut – bool or string, optional; Whether or not to use
squash_symmetry_redundant_sectors_dreadnaut() to find sector symme-
tries. If given a string, interpret that string as the command line executable dreadnaut.
If True, try $SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable
$SECDEC_CONTRIB is not set, dreadnaut. Default: True

5.2.3 Drawing Feynman Diagrams

Use the following function to draw Feynman diagrams.

pySecDec.loop_integral.draw.plot_diagram(internal_lines, external_lines, filename, pow-
erlist=None, neato=’neato’, extension=’pdf’,
Gstart=0)

Draw a Feynman diagram using Graphviz (neato).

Thanks to Viktor Papara <papara@mpp.mpg.de> for his major contributions to this function.

Warning: The target is overwritten without prompt if it exists already.

Parameters

• internal_lines – list; Adjacency list of internal lines, e.g. [['m',['a',4]],
['m',[4,5]], ['m',['a',5]],[0,[1,2]],[0,[4,1]],[0,[2,5]]]

• external_lines – list; Adjacency list of external lines, e.g. [[’p1’,1],[’p2’,2],[’p3’,’a’]]

• filename – string; The name of the output file. The generated file gets this name plus the
file extension.

• powerlist – list, optional; The powers of the propagators defined by the internal_lines.

• neato – string, default: “neato”; The shell command to call “neato”.

• extension – string, default: “pdf”; The file extension. This also defines the output for-
mat.

• Gstart – nonnegative int; The is value is passed to “neato” with the “-Gstart” option. Try
changing this value if the visualization looks bad.

5.3 Decomposition

The core of sector decomposition. This module implements the actual decomposition routines.

5.3.1 Common

This module collects routines that are used by multiple decompition modules.

class pySecDec.decomposition.Sector(cast, other=[], Jacobian=None)
Container class for sectors that arise during the sector decomposition.

46 Chapter 5. Reference Guide

mailto:papara@mpp.mpg.de

pySecDec Documentation, Release 1.1

Parameters

• cast – iterable of algebra.Product or of algebra.Polynomial; The polynomi-
als to be cast to the form <monomial> * (const + ...)

• other – iterable of algebra.Polynomial, optional; All variable transformations are
applied to these polynomials but it is not attempted to achieve the form <monomial> *
(const + ...)

• Jacobian – algebra.Polynomial with one term, optional; The Jacobian determi-
nant of this sector. If not provided, the according unit monomial (1*x0^0*x1^0...) is as-
sumed.

pySecDec.decomposition.squash_symmetry_redundant_sectors_sort(sectors,
sort_function)

Reduce a list of sectors by squashing duplicates with equal integral.

If two sectors only differ by a permutation of the polysymbols (to be interpreted as integration variables over
some inteval), then the two sectors integrate to the same value. Thus we can drop one of them and count the
other twice. The multiple counting of a sector is accounted for by increasing the coefficient of the Jacobian by
one.

Equivalence up to permutation is established by applying the sort_function to each sector, this brings them into
a canonical form. Sectors with identical canonical forms differ only by a permutation.

Note: whether all symmetries are found depends on the choice of sort_function. Neither pySecDec.
matrix_sort.iterative_sort() nor pySecDec.matrix_sort.Pak_sort() find all symme-
tries.

See also: squash_symmetry_redundant_sectors_dreadnaut()

Example:

>>> from pySecDec.algebra import Polynomial
>>> from pySecDec.decomposition import Sector
>>> from pySecDec.decomposition import squash_symmetry_redundant_sectors_sort
>>> from pySecDec.matrix_sort import Pak_sort
>>>
>>> poly = Polynomial([(0,1),(1,0)], ['a','b'])
>>> swap = Polynomial([(1,0),(0,1)], ['a','b'])
>>> Jacobian_poly = Polynomial([(1,0)], [3]) # three
>>> Jacobian_swap = Polynomial([(0,1)], [5]) # five
>>> sectors = (
... Sector([poly],Jacobian=Jacobian_poly),
... Sector([swap],Jacobian=Jacobian_swap)
...)
>>>
>>> reduced_sectors = squash_symmetry_redundant_sectors_sort(sectors,
... Pak_sort)
>>> len(reduced_sectors) # symmetry x0 <--> x1
1
>>> # The Jacobians are added together to account
>>> # for the double counting of the sector.
>>> reduced_sectors[0].Jacobian
+ (8)*x0

Parameters

• sectors – iterable of Sector; the sectors to be reduced.

5.3. Decomposition 47

pySecDec Documentation, Release 1.1

• sort_function – pySecDec.matrix_sort.iterative_sort() or
pySecDec.matrix_sort.Pak_sort(); The function to be used for finding a
canonical form of the sectors.

pySecDec.decomposition.squash_symmetry_redundant_sectors_dreadnaut(sectors,
dread-
naut=’dreadnaut’,
workdir=’dreadnaut_tmp’,
keep_workdir=False)

Reduce a list of sectors by squashing duplicates with equal integral.

Each Sector is converted to a Polynomial which is represented as a graph following the example of
[BKAP] (v2.6 Figure 7, Isotopy of matrices).

We first multiply each polynomial in the sector by a unique tag then sum the polynomials of the sector, this
converts a sector to a polynomial. Next, we convert the expolist of the resulting polynomial to a graph where
each unique exponent in the expolist is considered to be a different symbol. Each unique coefficient in the
polynomial‘s coeffs is assigned a vertex and connected to the row vertex of any term it multiplies. The external
program dreadnaut is then used to bring the graph into a canonical form and provide a hash. Sectors with
equivalent hashes may be identical, their canonical graphs are compared and if they are identical the sectors are
combined.

Note: This function calls the command line executable of dreadnaut [BKAP]. It has been tested with dreadnaut
version nauty26r7.

See also: squash_symmetry_redundant_sectors_sort()

Parameters

• sectors – iterable of Sector; the sectors to be reduced.

• dreadnaut – string; The shell command to run dreadnaut.

• workdir – string; The directory for the communication with dreadnaut. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with dreadnaut is done via files.

• keep_workdir – bool; Whether or not to delete the workdir after execution.

5.3.2 Iterative

The iterative sector decomposition routines.

exception pySecDec.decomposition.iterative.EndOfDecomposition
This exception is raised if the function iteration_step() is called although the sector is already in standard
form.

pySecDec.decomposition.iterative.find_singular_set(sector, indices=None)
Function within the iterative sector decomposition procedure which heuristically chooses an optimal decom-
position set. The strategy was introduced in arXiv:hep-ph/0004013 [BH00] and is described in 4.2.2 of
arXiv:1410.7939 [Bor14]. Return a list of indices.

Parameters

48 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

• sector – Sector; The sector to be decomposed.

• indices – iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.iteration_step(sector, indices=None)
Run a single step of the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2
[Hei08]. Return an iterator of Sector - the arising subsectors.

Parameters

• sector – Sector; The sector to be decomposed.

• indices – iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.iterative_decomposition(sector, indices=None)
Run the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2 [Hei08].
Return an iterator of Sector - the arising subsectors.

Parameters

• sector – Sector; The sector to be decomposed.

• indices – iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.primary_decomposition(sector, indices=None)
Perform the primary decomposition as described in chapter 3.2 (part I) of arXiv:0803.4177v2 [Hei08]. Return
a list of Sector - the primary sectors. For N Feynman parameters, there are N primary sectors where the i-th
Feynman parameter is set to 1 in sector i.

See also:

primary_decomposition_polynomial()

Parameters

• sector – Sector; The container holding the polynomials (typically U and F) to elimi-
nate the Dirac delta from.

• indices – iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.primary_decomposition_polynomial(polynomial,
in-
dices=None)

Perform the primary decomposition on a single polynomial.

See also:

primary_decomposition()

Parameters

• polynomial – algebra.Polynomial; The polynomial to eliminate the Dirac delta
from.

5.3. Decomposition 49

pySecDec Documentation, Release 1.1

• indices – iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.remap_parameters(singular_parameters, Jacobian,
*polynomials)

Remap the Feynman parameters according to eq. (16) of arXiv:0803.4177v2 [Hei08]. The parameter whose
index comes first in singular_parameters is kept fix.

The remapping is done in place; i.e. the polynomials are NOT copied.

Parameters

• singular_parameters – list of integers; The indices αr such that at least one of poly-
nomials becomes zero if all tαr → 0.

• Jacobian – Polynomial; The Jacobian determinant is multiplied to this polynomial.

• polynomials – abritrarily many instances of algebra.Polynomial where all of
these have an equal number of variables; The polynomials of Feynman parameters to be
remapped. These are typically F and U .

Example:

remap_parameters([1,2], Jacobian, F, U)

5.3.3 Geometric

The geometric sector decomposition routines.

pySecDec.decomposition.geometric.Cheng_Wu(sector, index=-1)
Replace one Feynman parameter by one. This means integrating out the Dirac delta according to the Cheng-Wu
theorem.

Parameters

• sector – Sector; The container holding the polynomials (typically U and F) to elimi-
nate the Dirac delta from.

• index – integer, optional; The index of the Feynman parameter to eliminate. Default: -1
(the last Feynman parameter)

class pySecDec.decomposition.geometric.Polytope(vertices=None, facets=None)
Representation of a polytope defined by either its vertices or its facets. Call
complete_representation() to translate from one to the other representation.

Parameters

• vertices – two dimensional array; The polytope in vertex representation. Each row is
interpreted as one vertex.

• facets – two dimensional array; The polytope in facet representation. Each row represents
one facet F . A row in facets is interpreted as one normal vector nF with additionally the
constant aF in the last column. The points v of the polytope obey⋂

F

(〈nF , v〉+ aF) ≥ 0

50 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

complete_representation(normaliz=’normaliz’, workdir=’normaliz_tmp’,
keep_workdir=False)

Transform the vertex representation of a polytope to the facet representation or the other way round. Re-
move surplus entries in self.facets or self.vertices.

Note: This function calls the command line executable of normaliz [BIR]. It has been tested with normaliz
versions 3.0.0, 3.1.0, and 3.1.1.

Parameters

• normaliz – string; The shell command to run normaliz.

• workdir – string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified direc-
tory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

• keep_workdir – bool; Whether or not to delete the workdir after execution.

vertex_incidence_lists()
Return for each vertex the list of facets it lies in (as dictonary). The keys of the output dictonary are the
vertices while the values are the indices of the facets in self.facets.

pySecDec.decomposition.geometric.convex_hull(*polynomials)
Calculate the convex hull of the Minkowski sum of all polynomials in the input. The algorithm sets all coeffi-
cients to one first and then only keeps terms of the polynomial product that have coefficient 1. Return the list of
these entries in the expolist of the product of all input polynomials.

Parameters polynomials – abritrarily many instances of Polynomial where all of these have
an equal number of variables; The polynomials to calculate the convex hull for.

pySecDec.decomposition.geometric.generate_fan(*polynomials)
Calculate the fan of the polynomials in the input. The rays of a cone are given by the exponent vectors after
factoring out a monomial together with the standard basis vectors. Each choice of factored out monomials gives
a different cone. Only full (N -) dimensional cones in RN≥0 need to be considered.

Parameters polynomials – abritrarily many instances of Polynomial where all of these have
an equal number of variables; The polynomials to calculate the fan for.

pySecDec.decomposition.geometric.geometric_decomposition(sector, indices=None,
normaliz=’normaliz’,
workdir=’normaliz_tmp’)

Run the sector decomposition using the geomethod as described in [BHJ+15].

Note: This function calls the command line executable of normaliz [BIR]. It has been tested with normaliz
versions 3.0.0, 3.1.0, and 3.1.1.

Parameters

• sector – Sector; The sector to be decomposed.

• indices – list of integers or None; The indices of the parameters to be considered as
integration variables. By default (indices=None), all parameters are considered as inte-
gration variables.

5.3. Decomposition 51

pySecDec Documentation, Release 1.1

• normaliz – string; The shell command to run normaliz.

• workdir – string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

pySecDec.decomposition.geometric.geometric_decomposition_ku(sector, in-
dices=None, nor-
maliz=’normaliz’,
workdir=’normaliz_tmp’)

Run the sector decomposition using the original geometric decomposition strategy by Kaneko and Ueda as
described in [KU10].

Note: This function calls the command line executable of normaliz [BIR]. It has been tested with normaliz
versions 3.0.0, 3.1.0, and 3.1.1.

Parameters

• sector – Sector; The sector to be decomposed.

• indices – list of integers or None; The indices of the parameters to be considered as
integration variables. By default (indices=None), all parameters are considered as inte-
gration variables.

• normaliz – string; The shell command to run normaliz.

• workdir – string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

pySecDec.decomposition.geometric.transform_variables(polynomial, transformation,
polysymbols=’y’)

Transform the parameters xi of a pySecDec.algebra.Polynomial,

xi →
∏
j

x
Tij
j

, where Tij is the transformation matrix.

Parameters

• polynomial – pySecDec.algebra.Polynomial; The polynomial to transform the
variables in.

• transformation – two dimensional array; The transformation matrix Tij .

• polysymbols – string or iterable of strings; The symbols for the new variables. This
argument is passed to the default constructor of pySecDec.algebra.Polynomial.
Refer to the documentation of pySecDec.algebra.Polynomial for further details.

52 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

pySecDec.decomposition.geometric.triangulate(cone, normaliz=’normaliz’,
workdir=’normaliz_tmp’,
keep_workdir=False,
switch_representation=False)

Split a cone into simplicial cones; i.e. cones defined by exactly D rays where D is the dimensionality.

Note: This function calls the command line executable of normaliz [BIR]. It has been tested with normaliz
versions 3.0.0, 3.1.0, and 3.1.1.

Parameters

• cone – two dimensional array; The defining rays of the cone.

• normaliz – string; The shell command to run normaliz.

• workdir – string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

• keep_workdir – bool; Whether or not to delete the workdir after execution.

• switch_representation – bool; Whether or not to switch between facet and ver-
tex/ray representation.

5.3.4 Splitting

Routines to split the integration between 0 and 1. This maps singularities from 1 to 0.

pySecDec.decomposition.splitting.find_singular_sets_at_one(polynomial)
Find all possible sets of parameters such that the polynomial‘s constant term vanishes if these parameters are set
to one.

Example:

>>> from pySecDec.algebra import Polynomial
>>> from pySecDec.decomposition.splitting import find_singular_sets_at_one
>>> polysymbols = ['x0', 'x1']
>>> poly = Polynomial.from_expression('1 - 10*x0 - x1', polysymbols)
>>> find_singular_sets_at_one(poly)
[(1,)]

Parameters polynomial – Polynomial; The polynomial to search in.

pySecDec.decomposition.splitting.remap_one_to_zero(polynomial, *indices)
Apply the transformation x→ 1− x to polynomial for the parameters of the given indices.

Parameters

• polynomial – Polynomial; The polynomial to apply the transformation to.

• indices – arbitrarily many int; The indices of the polynomial.polysymbols to
apply the transformation to.

Example:

5.3. Decomposition 53

pySecDec Documentation, Release 1.1

>>> from pySecDec.algebra import Polynomial
>>> from pySecDec.decomposition.splitting import remap_one_to_zero
>>> polysymbols = ['x0']
>>> polynomial = Polynomial.from_expression('x0', polysymbols)
>>> remap_one_to_zero(polynomial, 0)
+ (1) + (-1)*x0

pySecDec.decomposition.splitting.split(sector, seed, *indices)
Split the integration interval [0, 1] for the parameters given by indices. The splitting point is fixed using numpy’s
random number generator.

Return an iterator of Sector - the arising subsectors.

Parameters sector – Sector; The sector to be split.

:param seed; integer; The seed for the random number generator that is used to fix the splitting point.

Parameters indices – arbitrarily many integers; The indices of the variables to be split.

pySecDec.decomposition.splitting.split_singular(sector, seed, indices=[])
Split the integration interval [0, 1] for the parameters that can lead to singularities at one for the polynomials in
sector.cast.

Return an iterator of Sector - the arising subsectors.

Parameters

• sector – Sector; The sector to be split.

• seed – integer; The seed for the random number generator that is used to fix the splitting
point.

• indices – iterables of integers; The indices of the variables to be split if required. An
empty iterator means that all variables may potentially be split.

5.4 Matrix Sort

Algorithms to sort a matrix when column and row permutations are allowed.

pySecDec.matrix_sort.Pak_sort(matrix)
Inplace modify the matrix to some ordering, when permutations of rows and columns (excluding the first) are
allowed. The implementation of this function is describedin chapter 2 of [Pak11].

Note: This function may result in different orderings depending on the initial ordering.

See also:

iterative_sort()

Parameters matrix – 2D array-like; The matrix to be canonicalized.

pySecDec.matrix_sort.iterative_sort(matrix)
Inplace modify the matrix to some ordering, when permutations of rows and columns (excluding the first) are
allowed.

54 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

Note: This function may result in different orderings depending on the initial ordering.

See also:

Pak_sort()

Parameters matrix – 2D array-like; The matrix to be canonicalized.

5.5 Subtraction

Routines to isolate the divergencies in an ε expansion.

pySecDec.subtraction.integrate_by_parts(polyprod, power_goal, *indices)
Repeatedly apply integration by parts,∫ 1

0

dtjt
(a−bε1−cε2+...)
j I(tj , {ti 6=j}, ε1, ε2, ...) =

1

a+ 1− bε1 − cε2 − ...

(
I(1, {ti6=j}, ε1, ε2, ...)−

∫ 1

0

dtjt
(a+1−bε1−cε2+...)
j I ′(tj , {ti 6=j}, ε1, ε2, ...)

)
, where I ′ denotes the derivative of I with respect to tj . The iteration stops, when a >= power_goal.

See also:

This function provides an alternative to integrate_pole_part().

Parameters

• polyprod – algebra.Product of the form <product of <monomial>**(a_j
+ ...)> * <regulator poles of cal_I> * <cal_I>; The input product as
decribed above. The <product of <monomial>**(a_j + ...)> should be a pySecDec.
algebra.Product of <monomial>**(a_j + ...). as described below. The <mono-
mial>**(a_j + ...) should be an pySecDec.algebra.ExponentiatedPolynomial
with exponent being a Polynomial of the regulators ε1, ε2, Although no depen-
dence on the Feynman parameters is expected in the exponent, the polynomial variables
should be the Feynman parameters and the regulators. The constant term of the exponent
should be numerical. The polynomial variables of monomial and the other factors (inter-
preted as I) are interpreted as the Feynman parameters and the epsilon regulators. Make sure
that the last factor (<cal_I>) is defined and finite for ε = 0. All poles for ε→ 0 should be
made explicit by putting them into <regulator poles of cal_I> as pySecDec.
algebra.Pow with exponent = -1 and the base of type pySecDec.algebra.
Polynomial.

• power_goal – number, e.g. float, integer, ...; The stopping criterion for the iteration.

• indices – arbitrarily many integers; The index/indices of the parameter(s) to partially
integrate. j in the formulae above.

Return the pole part and the numerically integrable remainder as a list. Each returned list element has the same
structure as the input polyprod.

pySecDec.subtraction.integrate_pole_part(polyprod, *indices)
Transform an integral of the form∫ 1

0

dtjt
(a−bε1−cε2+...)
j I(tj , {ti 6=j}, ε1, ε2, ...)

5.5. Subtraction 55

pySecDec Documentation, Release 1.1

into the form

|a|−1∑
p=0

1

a+ p+ 1− bε1 − cε2 − ...
I(p)(0, {ti 6=j}, ε1, ε2, ...)

p!
+

∫ 1

0

dtjt
(a−bε1−cε2+...)
j R(tj , {ti 6=j}, ε1, ε2, ...)

, where I(p) denotes the p-th derivative of I with respect to tj . The equations above are to be understood
schematically.

See also:

This function implements the transformation from equation (19) to (21) as described in arXiv:0803.4177v2
[Hei08].

Parameters

• polyprod – algebra.Product of the form <product of <monomial>**(a_j
+ ...)> * <regulator poles of cal_I> * <cal_I>; The input product as
decribed above. The <product of <monomial>**(a_j + ...)> should be a pySecDec.
algebra.Product of <monomial>**(a_j + ...). as described below. The <mono-
mial>**(a_j + ...) should be an pySecDec.algebra.ExponentiatedPolynomial
with exponent being a Polynomial of the regulators ε1, ε2, Although no depen-
dence on the Feynman parameters is expected in the exponent, the polynomial variables
should be the Feynman parameters and the regulators. The constant term of the exponent
should be numerical. The polynomial variables of monomial and the other factors (inter-
preted as I) are interpreted as the Feynman parameters and the epsilon regulators. Make sure
that the last factor (<cal_I>) is defined and finite for ε = 0. All poles for ε→ 0 should be
made explicit by putting them into <regulator poles of cal_I> as pySecDec.
algebra.Pow with exponent = -1 and the base of type pySecDec.algebra.
Polynomial.

• indices – arbitrarily many integers; The index/indices of the parameter(s) to partially
integrate. j in the formulae above.

Return the pole part and the numerically integrable remainder as a list. That is the sum and the integrand of
equation (21) in arXiv:0803.4177v2 [Hei08]. Each returned list element has the same structure as the input
polyprod.

pySecDec.subtraction.pole_structure(monomial_product, *indices)
Return a list of the unregulated exponents of the parameters specified by indices in monomial_product.

Parameters

• monomial_product – pySecDec.algebra.ExponentiatedPolynomialwith
exponent being a Polynomial; The monomials of the subtraction to extract the pole
structure from.

• indices – arbitrarily many integers; The index/indices of the parameter(s) to partially
investigate.

5.6 Expansion

Routines to series expand singular and nonsingular expressions.

pySecDec.expansion.expand_Taylor(expression, indices, orders)
Series/Taylor expand a nonsingular expression around zero.

Return a algebra.Polynomial - the series expansion.

56 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

Parameters

• expression – an expression composed of the types defined in the module algebra;
The expression to be series expanded.

• indices – integer or iterable of integers; The indices of the parameters to expand. The
ordering of the indices defines the ordering of the expansion.

• order – integer or iterable of integers; The order to which the expansion is to be calculated.

pySecDec.expansion.expand_singular(product, indices, orders)
Series expand a potentially singular expression of the form

aN ε0 + bN ε1 + ...

aDε0 + bDε1 + ...

Return a algebra.Polynomial - the series expansion.

See also:

To expand more general expressions use expand_sympy().

Parameters

• product – algebra.Product with factors of the form <polynomial> and
<polynomial> ** -1; The expression to be series expanded.

• indices – integer or iterable of integers; The indices of the parameters to expand. The
ordering of the indices defines the ordering of the expansion.

• order – integer or iterable of integers; The order to which the expansion is to be calculated.

pySecDec.expansion.expand_sympy(expression, variables, orders)
Expand a sympy expression in the variables to given orders. Return the expansion as nested pySecDec.
algebra.Polynomial.

See also:

This function is a generalization of expand_singular().

Parameters

• expression – string or sympy expression; The expression to be expanded

• variables – iterable of strings or sympy symbols; The variables to expand the expression
in.

• orders – iterable of integers; The orders to expand to.

5.7 Code Writer

This module collects routines to create a c++ library.

5.7.1 Make Package

This is the main function of pySecDec.

5.7. Code Writer 57

pySecDec Documentation, Release 1.1

pySecDec.code_writer.make_package(name, integration_variables, regulators, requested_orders,
polynomials_to_decompose, polynomial_names=[],
other_polynomials=[], prefactor=1, remain-
der_expression=1, functions=[], real_parameters=[],
complex_parameters=[], form_optimization_level=2,
form_work_space=‘500M’, form_insertion_depth=5,
contour_deformation_polynomial=None,
positive_polynomials=[], decomposi-
tion_method=’iterative_no_primary’, nor-
maliz_executable=’normaliz’, enforce_complex=False,
split=False, ibp_power_goal=-1, use_dreadnaut=True)

Decompose, subtract and expand an expression. Return it as c++ package.

See also:

In order to decompose a loop integral, use the function pySecDec.loop_integral.loop_package().

See also:

The generated library is described in Generated C++ Libraries.

Parameters

• name – string; The name of the c++ namepace and the output directory.

• integration_variables – iterable of strings or sympy symbols; The variables that
are to be integrated from 0 to 1.

• regulators – iterable of strings or sympy symbols; The UV/IR regulators of the integral.

• requested_orders – iterable of integers; Compute the expansion in the regulators to
these orders.

• polynomials_to_decompose – iterable of strings or sympy expressions or
pySecDec.algebra.ExponentiatedPolynomial or pySecDec.algebra.
Polynomial; The polynomials to be decomposed.

• polynomial_names – iterable of strings; Assign symbols for the polyno-
mials_to_decompose. These can be referenced in the other_polynomials; see
other_polynomials for details.

• other_polynomials – iterable of strings or sympy expressions or pySecDec.
algebra.ExponentiatedPolynomial or pySecDec.algebra.Polynomial;
Additional polynomials where no decomposition is attempted. The symbols defined in poly-
nomial_names can be used to reference the polynomials_to_decompose. This is particularly
useful when computing loop integrals where the “numerator” can depend on the first and
second Symanzik polynomials.

Example (1-loop bubble with numerator):

>>> polynomials_to_decompose = ["(x0 + x1)**(2*eps - 4)",
... "(-p**2*x0*x1)**(-eps))"]
>>> polynomial_names = ["U", "F"]
>>> other_polynomials = [""" (eps - 1)*s*U**2
... + (eps - 2)*F
... - (eps - 1)*2*s*x0*U
... + (eps - 1)*s*x0**2"""]

See also:

pySecDec.loop_integral

58 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

Note that the polynomial_names refer to the polynomials_to_decompose without their ex-
ponents.

• prefactor – string or sympy expression, optional; A factor that does not depend on the
integration variables.

• remainder_expression – string or sympy expression or pySecDec.algebra.
_Expression, optional; An additional factor.

Dummy function must be provided with all arguments, e.g.
remainder_expression='exp(eps)*f(x0,x1)'. In addition, all dummy
function must be listed in functions.

• functions – iterable of strings or sympy symbols, optional; Function symbols occuring
in remainder_expression, e.g.‘‘[’f’]‘‘.

Note: Only user-defined functions that are provided as c++-callable code should be men-
tioned here. Listing basic mathematical functions (e.g. log, pow, exp, sqrt, ...) is not
required and considered an error to avoid name conflicts.

Note: The power function pow and the logarithm log use the nonstandard continuation
with an infinitesimal negative imaginary part on the negative real axis (e.g. log(-1) =
-i*pi).

• real_parameters – iterable of strings or sympy symbols, optional; Symbols to be in-
terpreted as real variables.

• complex_parameters – iterable of strings or sympy symbols, optional; Symbols to be
interpreted as complex variables.

• form_optimization_level – integer out of the interval [0,3], optional; The opti-
mization level to be used in FORM. Default: 2.

• form_work_space – string, optional; The FORM WorkSpace. Default: '500M'.

• form_insertion_depth – nonnegative integer, optional; How deep FORM should try
to resolve nested function calls. Default: 5.

• contour_deformation_polynomial – string or sympy symbol, optional; The name
of the polynomial in polynomial_names that is to be continued to the complex plane accord-
ing to a −iδ prescription. For loop integrals, this is the second Symanzik polynomial F. If
not provided, no code for contour deformation is created.

• positive_polynomials – iterable of strings or sympy symbols, optional; The names
of the polynomials in polynomial_names that should always have a positive real part. For
loop integrals, this applies to the first Symanzik polynomial U. If not provided, no polyno-
mial is checked for positiveness. If contour_deformation_polynomial is None, this param-
eter is ignored.

• decomposition_method – string, optional; The strategy to decompose the polynomi-
als. The following strategies are available:

– ‘iterative_no_primary’ (default)

– ‘geometric_no_primary’

– ‘iterative’

– ‘geometric’

5.7. Code Writer 59

pySecDec Documentation, Release 1.1

– ‘geometric_ku’

‘iterative’, ‘geometric’, and ‘geometric_ku’ are only valid for loop integrals. An end
user should always use ‘iterative_no_primary’ or ‘geometric_no_primary’ here. In or-
der to compute loop integrals, please use the function pySecDec.loop_integral.
loop_package().

• normaliz_executable – string, optional; The command to run normaliz. normaliz is
only required if decomposition_method starts with ‘geometric’. Default: ‘normaliz’

• enforce_complex – bool, optional; Whether or not the generated integrand functions
should have a complex return type even though they might be purely real. The return type
of the integrands is automatically complex if contour_deformation is True or if there are
complex_parameters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if log(<negative real>) occurs in one of the integrand
functions. However, pySecDec will suggest setting this flag to True in that case. Default:
False

• split – bool or integer, optional; Whether or not to split the integration domain in order
to map singularities from 1 to 0. Set this option to True if you have singularties when one
or more integration variables are one. If an integer is passed, that integer is used as seed to
generate the splitting point. Default: False

• ibp_power_goal – integer, optional; The power_goal that is forwarded to
integrate_by_parts().

This option controls how the subtraction terms are generated. Setting it to -numpy.inf
disables integrate_by_parts(), while 0 disables integrate_pole_part().

See also:

To generate the subtraction terms, this function first calls integrate_by_parts()
for each integration variable with the give ibp_power_goal. Then
integrate_pole_part() is called.

Default: -1

• use_dreadnaut – bool or string, optional; Whether or not to use
squash_symmetry_redundant_sectors_dreadnaut() to find sector symme-
tries. If given a string, interpret that string as the command line executable dreadnaut.
If True, try $SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable
$SECDEC_CONTRIB is not set, dreadnaut. Default: True

5.7.2 Template Parser

Functions to generate c++ sources from template files.

pySecDec.code_writer.template_parser.parse_template_file(src, dest, replace-
ments={})

Copy a file from src to dest replacing %(...) instructions in the standard python way.

Warning: If the file specified in dest exists, it is overwritten without prompt.

See also:

parse_template_tree()

Parameters

60 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

• src – str; The path to the template file.

• dest – str; The path to the destination file.

• replacements – dict; The replacements to be performed. The standard python replace-
ment rules apply:

>>> '%(var)s = %(value)i' % dict(
... var = 'my_variable',
... value = 5)
'my_variable = 5'

pySecDec.code_writer.template_parser.parse_template_tree(src, dest, replace-
ments_in_files={},
filesys-
tem_replacements={})

Copy a directory tree from src to dest using parse_template_file() for each file and replacing the
filenames according to filesystem_replacements.

See also:

parse_template_file()

Parameters

• src – str; The path to the template directory.

• dest – str; The path to the destination directory.

• replacements_in_files – dict; The replacements to be performed in the files. The
standard python replacement rules apply:

>>> '%(var)s = %(value)i' % dict(
... var = 'my_variable',
... value = 5)
'my_variable = 5'

• filesystem_replacements – dict; Renaming rules for the destination files. and di-
rectories. If a file or directory name in the source tree src matches a key in this dictionary,
it is renamed to the corresponding value. If the value is None, the corresponding file is
ignored.

5.8 Generated C++ Libraries

A C++ Library to numerically compute a given integral (loop integral) can be generated by the make_package()
(loop_package()) functions. The name passed to the make_package() or loop_package() function will
be used as the C++ namespace of the generated library. A program demonstrating the use of the C++ library is
generated for each integral and written to name/integrate_name.cpp. Here we document the C++ library API.

See also:

C++ Interface

typedef double real_t
The real type used by the library.

typedef std::complex<real_t> complex_t
The complex type used by the library.

5.8. Generated C++ Libraries 61

pySecDec Documentation, Release 1.1

type integrand_return_t
The return type of the integrand function. If the integral has complex parameters or uses contour deformation
or if enforce_complex is set to True in the call to make_package() or loop_package() then inte-
grand_return_t is complex_t. Otherwise integrand_return_t is real_t.

template<typename T>
using nested_series_t = secdecutil::Series<secdecutil::Series<...<T>>>

A potentially nested secdecutil::Series representing the series expansion in each of the regulators. If
the integral depends on only one regulator (for example, a loop integral generated with loop_package())
this type will be a secdecutil::Series. For integrals that depend on multiple regulators then this will
be a series of series representing the multivariate series. This type can be used to write code that can handle
integrals depending on arbitrarily many regulators.

See also:

secdecutil::Series

typedef secdecutil::IntegrandContainer<integrand_return_t, real_t const *const > integrand_t
The type of the integrand. Within the generated C++ library integrands are stored in a container along with the
number of integration variables upon which they depend. These containers can be passed to an integrator for
numerical integration.

See also:

secdecutil::IntegrandContainer and secdecutil::Integrator.

const unsigned int number_of_sectors
The number of sectors generated by the sector decomposition.

const unsigned int number_of_regulators
The number of regulators on which the integral depends.

const unsigned int number_of_real_parameters
The number of real parameters on which the integral depends.

const std::vector<std::string> names_of_real_parameters
An ordered vector of string representations of the names of the real parameters.

const unsigned int number_of_complex_parameters
The number of complex parameters on which the integral depends.

const std::vector<std::string> names_of_complex_parameters
An ordered vector of string representations of the names of the complex parameters.

const std::vector<int> lowest_orders
A vector of the lowest order of each regulator which appears in the integral, not including the prefactor.

const std::vector<int> highest_orders
A vector of the highest order of each regulator which appears in the integral, not including the prefactor. This
depends on the requested_orders and prefactor/additional_prefactor parameter passed to make_package()
or loop_package(). In the case of loop_package() it also depends on the Γ-function prefactor of the
integral which appears upon Feynman parametrization.

const std::vector<int> lowest_prefactor_orders
A vector of the lowest order of each regulator which appears in the prefactor of the integral.

const std::vector<int> highest_prefactor_orders
A vector of the highest order of each regulator which appears in the prefactor of the integral.

const std::vector<int> requested_orders
A vector of the requested orders of each regulator used to generate the C++ library, i.e. the requested_orders
parameter passed to make_package() or loop_package().

62 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

const std::vector<nested_series_t<sector_container_t>> sectors
A low level interface for obtaining the underlying integrand C++ functions.

Warning: The precise definition and usage of sectors is likely to change in future versions of pySecDec.

nested_series_t<integrand_return_t> prefactor(const std::vector<real_t> &real_parameters, const
std::vector<complex_t> &complex_parameters)

The series expansion of the integral prefactor evaluated with the given parameters. If the library was gen-
erated using make_package() it will be equal to the prefactor passed to make_package(). If the li-
brary was generated with loop_package() it will be the product of the additional_prefactor passed to
loop_package() and the Γ-function prefactor of the integral which appears upon Feynman parametriza-
tion.

const std::vector<std::vector<real_t>> pole_structures
A vector of the powers of the monomials that can be factored out of each sector of the polynomial during the
decomposition.

Example: an integral depending on variables x and y may have two sectors, the first may have a monomial
x−1y−2 factored out and the second may have a monomial x−1 factored out during the decomposition. The
resulting pole_structures would read { {-1,-2}, {-1,0} }. Poles of type x−1 are known as logarithmic
poles, poles of type x−2 are known as linear poles.

std::vector<nested_series_t<integrand_t>> make_integrands(const std::vector<real_t>
&real_parameters, const
std::vector<complex_t> &com-
plex_parameters)

(without contour deformation)

std::vector<nested_series_t<integrand_t>> make_integrands(const std::vector<real_t>
&real_parameters, const
std::vector<complex_t> &com-
plex_parameters, unsigned num-
ber_of_presamples = 100000, real_t
deformation_parameters_maximum = 1.,
real_t deformation_parameters_minimum
= 1.e-5, real_t deforma-
tion_parameters_decrease_factor =
0.9)

(with contour deformation)

Gives a vector containing the series expansions of individual sectors of the integrand after sector de-
composition with the specified real_paraemters and complex_parameters bound. Each element of the
vector contains the series expansion of an individual sector. The series consists of instances of
secdecutil::IntegrandContainer which contain the integrand functions and the number of in-
tegration variables upon which they depend. The real and complex parameters are bound to the values
passed in real_parameters and complex_parameters. If enabled, contour deformation is controlled by the
parameters number_of_presamples, deformation_parameters_maximum, deformation_parameters_minimum,
deformation_parameters_decrease_factor which are documented in pySecDec.integral_interface.
IntegralLibrary .

Passing the integrand_t to the secdecutil::Integrator::integrate() function of an instance of a
particular secdecutil::Integrator will return the numerically evaluated integral. To integrate all orders
of all sectors secdecutil::deep_apply() can be used.

Note: This is the recommended way to access the integrand functions.

5.8. Generated C++ Libraries 63

pySecDec Documentation, Release 1.1

See also:

C++ Interface, Integrator Examples, pySecDec.integral_interface.IntegralLibrary

5.9 Integral Interface

An interface to libraries generated by pySecDec.code_writer.make_package() or pySecDec.
loop_integral.loop_package().

class pySecDec.integral_interface.CPPIntegrator
Abstract base class for integrators to be used with an IntegralLibrary . This class holds a pointer to the
c++ integrator and defines the destructor.

class pySecDec.integral_interface.Cuhre(integral_library, epsrel=0.01, epsabs=1e-07,
flags=0, mineval=0, maxeval=1000000, key=0,
real_complex_together=False)

Wrapper for the Cuhre integrator defined in the cuba library.

Parameters integral_library – IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in the cuba manual.

class pySecDec.integral_interface.Divonne(integral_library, epsrel=0.01, epsabs=1e-07,
flags=0, seed=0, mineval=0, maxeval=1000000,
key1=2000, key2=1, key3=1, maxpass=4, bor-
der=0.0, maxchisq=1.0, mindeviation=0.15,
real_complex_together=False)

Wrapper for the Divonne integrator defined in the cuba library.

Parameters integral_library – IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in the cuba manual.

class pySecDec.integral_interface.IntegralLibrary(shared_object_path)
Interface to a c++ library produced by make_package() or loop_package().

Parameters shared_object_path – str; The path to the file “<name>_pylink.so” that can be
built by the command

$ make pylink

in the root directory of the c++ library.

Instances of this class can be called with the following arguments:

Parameters

• real_parameters – iterable of float; The real_parameters of the library.

• complex_parameters – iterable of complex; The complex parameters of the library.

• together – bool; Whether to integrate the sum of all sectors or to integrate the sectors
separately. Default: True.

• number_of_presamples – unsigned int, optional; The number of samples used for the
comtour optimization. This option is ignored if the integral library was created without
deformation. Default: 100000.

64 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

• deformation_parameters_maximum – float, optional; The maximal value the de-
formation parameters λi can obtain. If number_of_presamples=0, all λi are set to
this value. This option is ignored if the integral library was created without deformation.
Default: 1.0.

• deformation_parameters_minimum – float, optional; This option is ignored if the
integral library was created without deformation. Default: 1e-5.

• deformation_parameters_decrease_factor – float, optional; If the sign check
with the optimized λi fails, all λi are multiplied by this value until the sign check passes.
This option is ignored if the integral library was created without deformation. Default: 0.9.

The call operator returns three strings: * The integral without its prefactor * The prefactor * The integral
multiplied by the prefactor

The integrator cen be configured by calling the member methods use_Vegas(), use_Suave(),
use_Divonne(), and use_Cuhre(). The available options are listed in the documentation of Vegas,
Suave, Divonne, and Cuhre, respectively. If not specified otherwise, Vegas is used with its default argu-
ments. For details about the options, refer to the cuba manual.

Further information about the library is stored in the member variable info of type dict.

class pySecDec.integral_interface.Suave(integral_library, epsrel=0.01, epsabs=1e-
07, flags=0, seed=0, mineval=0, maxe-
val=1000000, nnew=1000, nmin=10, flatness=25.0,
real_complex_together=False)

Wrapper for the Suave integrator defined in the cuba library.

Parameters integral_library – IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in the cuba manual.

class pySecDec.integral_interface.Vegas(integral_library, epsrel=0.01, epsabs=1e-07,
flags=0, seed=0, mineval=0, maxeval=1000000,
nstart=1000, nincrease=500, nbatch=1000,
real_complex_together=False)

Wrapper for the Vegas integrator defined in the cuba library.

Parameters integral_library – IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in the cuba manual.

5.10 Miscellaneous

Collection of general-purpose helper functions.

pySecDec.misc.adjugate(M)
Calculate the adjugate of a matrix.

Parameters M – a square-matrix-like array;

pySecDec.misc.all_pairs(iterable)
Return all possible pairs of a given set. all_pairs([1,2,3,4]) --> [(1,2),(3,4)] [(1,3),
(2,4)] [(1,4),(2,3)]

Parameters iterable – iterable; The set to be split into all possible pairs.

5.10. Miscellaneous 65

pySecDec Documentation, Release 1.1

pySecDec.misc.argsort_2D_array(array)
Sort a 2D array according to its row entries. The idea is to bring identical rows together.

See also:

If your array is not two dimesional use argsort_ND_array().

Example:

input sorted
1 2 3 1 2 3
2 3 4 1 2 3
1 2 3 2 3 4

Return the indices like numpy’s argsort() would.

Parameters array – 2D array; The array to be argsorted.

pySecDec.misc.argsort_ND_array(array)
Like argsort_2D_array(), this function groups identical entries in an array with any dimensionality
greater than (or equal to) two together.

Return the indices like numpy’s argsort() would.

See also:

argsort_2D_array()

Parameters array – ND array, N >= 2; The array to be argsorted.

pySecDec.misc.assert_degree_at_most_max_degree(expression, variables, max_degree, er-
ror_message)

Assert that expression is a polynomial of degree less or equal max_degree in the variables.

pySecDec.misc.cached_property(method)
Like the builtin property to be used as decorator but the method is only called once per instance.

Example:

class C(object):
'Sum up the numbers from one to `N`.'
def __init__(self, N):

self.N = N
@cached_property
def sum(self):

result = 0
for i in range(1, self.N + 1):

result += i
return result

pySecDec.misc.det(M)
Calculate the determinant of a matrix.

Parameters M – a square-matrix-like array;

pySecDec.misc.doc(docstring)
Decorator that replaces a function’s docstring with docstring.

Example:

@doc('documentation of `some_funcion`')
def some_function(*args, **kwargs):

pass

66 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.1

pySecDec.misc.lowest_order(expression, variable)
Find the lowest order of expression‘s series expansion in variable.

Example:

>>> from pySecDec.misc import lowest_order
>>> lowest_order('exp(eps)', 'eps')
0
>>> lowest_order('gamma(eps)', 'eps')
-1

Parameters

• expression – string or sympy expression; The expression to compute the lowest expan-
sion order of.

• variable – string or sympy expression; The variable in which to expand.

pySecDec.misc.missing(full, part)
Return the elements in full that are not contained in part. Raise ValueError if an element is in part but
not in full. missing([1,2,3], [1]) --> [2,3] missing([1,2,3,1], [1,2]) --> [3,1]
missing([1,2,3], [1,'a']) --> ValueError

Parameters

• full – iterable; The set of elements to complete part with.

• part – iterable; The set to be completed to a superset of full.

pySecDec.misc.powerset(iterable, min_length=0, stride=1)
Return an iterator over the powerset of a given set. powerset([1,2,3]) --> () (1,) (2,) (3,)
(1,2) (1,3) (2,3) (1,2,3)

Parameters

• iterable – iterable; The set to generate the powerset for.

• min_length – integer, optional; Only generate sets with minimal given length. Default:
0.

• stride – integer; Only generate sets that have a multiple of stride elements.
powerset([1,2,3], stride=2) --> () (1,2) (1,3) (2,3)

pySecDec.misc.rangecomb(low, high)
Return an iterator over the occuring orders in a multivariate series expansion between low and high.

Parameters

• low – vector-like array; The lowest orders.

• high – vector-like array; The highest orders.

Example:

>>> from pySecDec.misc import rangecomb
>>> all_orders = rangecomb([-1,-2], [0,0])
>>> list(all_orders)
[(-1, -2), (-1, -1), (-1, 0), (0, -2), (0, -1), (0, 0)]

pySecDec.misc.sympify_symbols(iterable, error_message, allow_number=False)
sympify each item in iterable and assert that it is a symbol.

5.10. Miscellaneous 67

pySecDec Documentation, Release 1.1

68 Chapter 5. Reference Guide

CHAPTER

SIX

REFERENCES

69

pySecDec Documentation, Release 1.1

70 Chapter 6. References

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

71

pySecDec Documentation, Release 1.1

72 Chapter 7. Indices and tables

BIBLIOGRAPHY

[BH00] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals,
Nucl. Phys. B 585 (2000) 741,
doi:10.1016/S0550-3213(00)00429-6,
arXiv:hep-ph/0004013

[BHJ+15] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, SecDec-3.0: numerical evaluation
of multi-scale integrals beyond one loop, 2015, Comput.Phys.Comm.196,
doi:10.1016/j.cpc.2015.05.022,
arXiv:1502.06595

[BIR] W. Bruns and B. Ichim and T. Römer and R. Sieg and C. Söger, Normaliz. Algorithms for rational cones and
affine monoids,
available at https://www.normaliz.uni-osnabrueck.de

[BKAP] B. D. McKay and A. Piperno, Practical graph isomorphism, II, 2014, Journal of Symbolic Computation,
60, 94-112,
doi:10.1016/j.jsc.2013.09.003

[Bor14] S. Borowka, Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications,
2014, PhD Thesis - Technische Universität München
mediaTUM:1220360,
arXiv:1410.7939

[GKR+11] J. Gluza, K. Kajda, T. Riemann, V. Yundin, Numerical Evaluation of Tensor Feynman Integrals in
Euclidean Kinematics, 2011, Eur.Phys.J.C71,
doi:10.1140/epjc/s10052-010-1516-y,
arXiv:1010.1667

[Hei08] G. Heinrich, Sector Decomposition, 2008, Int.J.Mod.Phys.A23,
doi:10.1142/S0217751X08040263,
arXiv:0803.4177

[KU10] T. Kaneko and T. Ueda, A Geometric method of sector decomposition, 2010, Comput.Phys.Comm.181,
doi:10.1016/j.cpc.2010.04.001,
arXiv:0908.2897

[Pak11] A. Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, 2012,
J. Phys.: Conf. Ser. 368 012049,
doi:10.1088/1742-6596/368/1/012049,
arXiv:1111.0868

73

http://dx.doi.org/10.1016/S0550-3213(00)00429-6
http://arxiv.org/abs/hep-ph/0004013
http://dx.doi.org/10.1016/j.cpc.2015.05.022
http://arxiv.org/abs/1502.06595
https://www.normaliz.uni-osnabrueck.de
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20140709-1220360-0-4
http://arxiv.org/abs/1410.7939
http://dx.doi.org/10.1140/epjc/s10052-010-1516-y
http://arxiv.org/abs/1010.1667
http://dx.doi.org/10.1142/S0217751X08040263
http://arxiv.org/abs/0803.4177
http://dx.doi.org/10.1016/j.cpc.2010.04.001
http://arxiv.org/abs/0908.2897
http://dx.doi.org/10.1088/1742-6596/368/1/012049
http://arxiv.org/abs/1111.0868

pySecDec Documentation, Release 1.1

[PSD17] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, pySecDec: a toolbox for the
numerical evaluation of multi-scale integrals, 2017,
arXiv:1703.09692

74 Bibliography

http://arxiv.org/abs/1703.09692

PYTHON MODULE INDEX

a
pySecDec.algebra, 33

c
pySecDec.code_writer, 57
pySecDec.code_writer.template_parser,

60

d
pySecDec.decomposition, 46
pySecDec.decomposition.geometric, 50
pySecDec.decomposition.iterative, 48
pySecDec.decomposition.splitting, 53

e
pySecDec.expansion, 56

i
pySecDec.integral_interface, 64

l
pySecDec.loop_integral, 40

m
pySecDec.matrix_sort, 54
pySecDec.misc, 65

s
pySecDec.subtraction, 55

75

pySecDec Documentation, Release 1.1

76 Python Module Index

INDEX

A
adjugate() (in module pySecDec.misc), 65
all_pairs() (in module pySecDec.misc), 65
argsort_2D_array() (in module pySecDec.misc), 65
argsort_ND_array() (in module pySecDec.misc), 66
assert_degree_at_most_max_degree() (in module py-

SecDec.misc), 66

B
becomes_zero_for() (pySecDec.algebra.Polynomial

method), 36

C
cached_property() (in module pySecDec.misc), 66
Cheng_Wu() (in module py-

SecDec.decomposition.geometric), 50
complete_representation() (py-

SecDec.decomposition.geometric.Polytope
method), 50

compute_derivatives() (pySecDec.algebra.Function
method), 34

convex_hull() (in module py-
SecDec.decomposition.geometric), 51

copy() (pySecDec.algebra.ExponentiatedPolynomial
method), 33

copy() (pySecDec.algebra.Function method), 34
copy() (pySecDec.algebra.Log method), 35
copy() (pySecDec.algebra.Polynomial method), 37
copy() (pySecDec.algebra.Pow method), 37
copy() (pySecDec.algebra.Product method), 38
copy() (pySecDec.algebra.ProductRule method), 39
copy() (pySecDec.algebra.Sum method), 40
CPPIntegrator (class in pySecDec.integral_interface), 64
Cuhre (class in pySecDec.integral_interface), 64

D
derive() (pySecDec.algebra.ExponentiatedPolynomial

method), 33
derive() (pySecDec.algebra.Function method), 34
derive() (pySecDec.algebra.Log method), 35
derive() (pySecDec.algebra.LogOfPolynomial method),

36

derive() (pySecDec.algebra.Polynomial method), 37
derive() (pySecDec.algebra.Pow method), 38
derive() (pySecDec.algebra.Product method), 38
derive() (pySecDec.algebra.ProductRule method), 39
derive() (pySecDec.algebra.Sum method), 40
det() (in module pySecDec.misc), 66
Divonne (class in pySecDec.integral_interface), 64
doc() (in module pySecDec.misc), 66

E
EndOfDecomposition, 48
expand_singular() (in module pySecDec.expansion), 57
expand_sympy() (in module pySecDec.expansion), 57
expand_Taylor() (in module pySecDec.expansion), 56
ExponentiatedPolynomial (class in pySecDec.algebra),

33
Expression() (in module pySecDec.algebra), 33

F
find_singular_set() (in module py-

SecDec.decomposition.iterative), 48
find_singular_sets_at_one() (in module py-

SecDec.decomposition.splitting), 53
from_expression() (pySecDec.algebra.LogOfPolynomial

static method), 36
from_expression() (pySecDec.algebra.Polynomial static

method), 37
Function (class in pySecDec.algebra), 34

G
generate_fan() (in module py-

SecDec.decomposition.geometric), 51
geometric_decomposition() (in module py-

SecDec.decomposition.geometric), 51
geometric_decomposition_ku() (in module py-

SecDec.decomposition.geometric), 52

H
has_constant_term() (pySecDec.algebra.Polynomial

method), 37

77

pySecDec Documentation, Release 1.1

I
IntegralLibrary (class in pySecDec.integral_interface), 64
integrate_by_parts() (in module pySecDec.subtraction),

55
integrate_pole_part() (in module pySecDec.subtraction),

55
iteration_step() (in module py-

SecDec.decomposition.iterative), 49
iterative_decomposition() (in module py-

SecDec.decomposition.iterative), 49
iterative_sort() (in module pySecDec.matrix_sort), 54

L
Log (class in pySecDec.algebra), 35
LogOfPolynomial (class in pySecDec.algebra), 35
loop_package() (in module pySecDec.loop_integral), 44
LoopIntegral (class in pySecDec.loop_integral), 40
LoopIntegralFromGraph (class in py-

SecDec.loop_integral), 41
LoopIntegralFromPropagators (class in py-

SecDec.loop_integral), 42
lowest_order() (in module pySecDec.misc), 66

M
make_package() (in module pySecDec.code_writer), 57
missing() (in module pySecDec.misc), 67

N
name::complex_t (C++ type), 61
name::highest_orders (C++ member), 62
name::highest_prefactor_orders (C++ member), 62
name::integrand_return_t (C++ type), 61
name::integrand_t (C++ type), 62
name::lowest_orders (C++ member), 62
name::lowest_prefactor_orders (C++ member), 62
name::make_integrands (C++ function), 63
name::names_of_complex_parameters (C++ member),

62
name::names_of_real_parameters (C++ member), 62
name::nested_series_t (C++ type), 62
name::number_of_complex_parameters (C++ member),

62
name::number_of_real_parameters (C++ member), 62
name::number_of_regulators (C++ member), 62
name::number_of_sectors (C++ member), 62
name::pole_structures (C++ member), 63
name::prefactor (C++ function), 63
name::real_t (C++ type), 61
name::requested_orders (C++ member), 62
name::sectors (C++ member), 62

P
Pak_sort() (in module pySecDec.matrix_sort), 54

parse_template_file() (in module py-
SecDec.code_writer.template_parser), 60

parse_template_tree() (in module py-
SecDec.code_writer.template_parser), 61

plot_diagram() (in module py-
SecDec.loop_integral.draw), 46

pole_structure() (in module pySecDec.subtraction), 56
Polynomial (class in pySecDec.algebra), 36
Polytope (class in pySecDec.decomposition.geometric),

50
Pow (class in pySecDec.algebra), 37
powerset() (in module pySecDec.misc), 67
primary_decomposition() (in module py-

SecDec.decomposition.iterative), 49
primary_decomposition_polynomial() (in module py-

SecDec.decomposition.iterative), 49
Product (class in pySecDec.algebra), 38
ProductRule (class in pySecDec.algebra), 39
pySecDec.algebra (module), 33
pySecDec.code_writer (module), 57
pySecDec.code_writer.template_parser (module), 60
pySecDec.decomposition (module), 46
pySecDec.decomposition.geometric (module), 50
pySecDec.decomposition.iterative (module), 48
pySecDec.decomposition.splitting (module), 53
pySecDec.expansion (module), 56
pySecDec.integral_interface (module), 64
pySecDec.loop_integral (module), 40
pySecDec.matrix_sort (module), 54
pySecDec.misc (module), 65
pySecDec.subtraction (module), 55

R
rangecomb() (in module pySecDec.misc), 67
remap_one_to_zero() (in module py-

SecDec.decomposition.splitting), 53
remap_parameters() (in module py-

SecDec.decomposition.iterative), 50
replace() (pySecDec.algebra.Function method), 34
replace() (pySecDec.algebra.Log method), 35
replace() (pySecDec.algebra.Polynomial method), 37
replace() (pySecDec.algebra.Pow method), 38
replace() (pySecDec.algebra.Product method), 38
replace() (pySecDec.algebra.ProductRule method), 39
replace() (pySecDec.algebra.Sum method), 40

S
secdecutil::deep_apply (C++ function), 26
secdecutil::IntegrandContainer (C++ class), 29
secdecutil::IntegrandContainer::integrand (C++ mem-

ber), 29
secdecutil::IntegrandContainer::number_of_integration_variables

(C++ member), 29
secdecutil::Integrator (C++ class), 30

78 Index

pySecDec Documentation, Release 1.1

secdecutil::Integrator::integrate (C++ function), 30
secdecutil::Integrator::together (C++ member), 30
secdecutil::Series (C++ class), 25
secdecutil::Series::expansion_parameter (C++ member),

25
secdecutil::Series::get_order_max (C++ function), 25
secdecutil::Series::get_order_min (C++ function), 25
secdecutil::Series::get_truncated_above (C++ function),

25
secdecutil::Series::has_term (C++ function), 25
secdecutil::Series::Series (C++ function), 25
secdecutil::UncorrelatedDeviation (C++ class), 28
secdecutil::UncorrelatedDeviation::uncertainty (C++

member), 28
secdecutil::UncorrelatedDeviation::value (C++ member),

28
Sector (class in pySecDec.decomposition), 46
simplify() (pySecDec.algebra.ExponentiatedPolynomial

method), 33
simplify() (pySecDec.algebra.Function method), 35
simplify() (pySecDec.algebra.Log method), 35
simplify() (pySecDec.algebra.LogOfPolynomial

method), 36
simplify() (pySecDec.algebra.Polynomial method), 37
simplify() (pySecDec.algebra.Pow method), 38
simplify() (pySecDec.algebra.Product method), 39
simplify() (pySecDec.algebra.ProductRule method), 39
simplify() (pySecDec.algebra.Sum method), 40
split() (in module pySecDec.decomposition.splitting), 54
split_singular() (in module py-

SecDec.decomposition.splitting), 54
squash_symmetry_redundant_sectors_dreadnaut() (in

module pySecDec.decomposition), 48
squash_symmetry_redundant_sectors_sort() (in module

pySecDec.decomposition), 47
Suave (class in pySecDec.integral_interface), 65
Sum (class in pySecDec.algebra), 39
sympify_symbols() (in module pySecDec.misc), 67

T
to_sum() (pySecDec.algebra.ProductRule method), 39
transform_variables() (in module py-

SecDec.decomposition.geometric), 52
triangulate() (in module py-

SecDec.decomposition.geometric), 52

V
Vegas (class in pySecDec.integral_interface), 65
vertex_incidence_lists() (py-

SecDec.decomposition.geometric.Polytope
method), 51

Index 79

	Installation
	Download the Program and Install
	The Geomethod and Normaliz
	Additional Dependencies for Generated c++ Packages

	Getting Started
	A Simple Example
	Evaluating a Loop Integral
	List of Examples

	Overview
	The Algebra Module
	Feynman Parametrization of Loop Integrals
	Sector Decomposition
	Subtraction
	Expansion

	SecDecUtil
	Series
	Deep Apply
	Uncertainties
	Integrand Container
	Integrator

	Reference Guide
	Algebra
	Loop Integral
	Decomposition
	Matrix Sort
	Subtraction
	Expansion
	Code Writer
	Generated C++ Libraries
	Integral Interface
	Miscellaneous

	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

