
MPP–2004–40
hep–ph/0404043

Cuba – a library for multidimensional numerical integration

T. Hahn
Max-Planck-Institut für Physik

Föhringer Ring 6, D–80805 Munich, Germany

Nov 28, 2014

Abstract

The Cuba library provides new implementations of four general-purpose multi-
dimensional integration algorithms: Vegas, Suave, Divonne, and Cuhre. Suave is
a new algorithm, Divonne is a known algorithm to which important details have
been added, and Vegas and Cuhre are new implementations of existing algorithms
with only few improvements over the original versions. All four algorithms can in-
tegrate vector integrands and have very similar Fortran, C/C++, and Mathematica
interfaces.

1 Introduction

Many problems in physics (and elsewhere) involve computing an integral, and often enough
this has to be done numerically, as the analytical result is known only in a limited number
of cases. In one dimension, the situation is quite satisfactory: standard packages, such as
Quadpack [1], reliably integrate a broad class of functions in modest CPU time. The
same is unfortunately not true for multidimensional integrals.

This paper presents the Cuba library with new implementations of four algorithms for
multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. They have
a C/C++, Fortran, and Mathematica interface each and are invoked in a very similar
way, thus making them easily interchangeable, e.g. for comparison purposes. All four can
integrate vector integrands. Cuhre is a deterministic algorithm, the others use Monte Carlo
methods.

Vegas is the simplest of the four. It uses importance sampling for variance reduction,
but is only in some cases competitive in terms of the number of samples needed to reach a
prescribed accuracy. Nevertheless, it has a few improvements over the original algorithm
[2, 3] and comes in handy for cross-checking the results of other methods.

Suave is a new algorithm which combines the advantages of two popular methods:
importance sampling as done by Vegas and subregion sampling in a manner similar to
Miser [4]. By dividing into subregions, Suave manages to a certain extent to get around

1

Vegas’ difficulty to adapt its weight function to structures not aligned with the coordinate
axes.

Divonne is a further development of the CERNLIB routine D151 [5]. Divonne works by
stratified sampling, where the partitioning of the integration region is aided by methods
from numerical optimization. A number of improvements have been added to this algo-
rithm, the most significant being the possibility to supply knowledge about the integrand.
Narrow peaks in particular are difficult to find without sampling very many points, espe-
cially in high dimensions. Often the exact or approximate location of such peaks is known
from analytic considerations, however, and with such hints the desired accuracy can be
reached with far fewer points.

Cuhre∗ employs a cubature rule for subregion estimation in a globally adaptive subdi-
vision scheme [6]. It is hence a deterministic, not a Monte Carlo method. In each iteration,
the subregion with the largest error is halved along the axis where the integrand has the
largest fourth difference. Cuhre is quite powerful in moderate dimensions, and is usually
the only viable method to obtain high precision, say relative accuracies much below 10−3.

The new algorithms were coded from scratch in C, which is a compromise of sorts
between C++ and Fortran 77, combining ease of linking to Fortran code with the avail-
ability of reasonable memory management. The declarations have been chosen such that
the routines can be called from Fortran directly. The Mathematica versions are based on
the same C code and use the MathLink API to communicate with Mathematica.

2 Vegas

Vegas is a Monte Carlo algorithm that uses importance sampling as a variance-reduction
technique. Vegas iteratively builds up a piecewise constant weight function, represented
on a rectangular grid. Each iteration consists of a sampling step followed by a refinement
of the grid. The exact details of the algorithm can be found in [2, 3] and shall not be
reproduced here.

Changes with respect to the original version are:

• Sobol quasi-random numbers [7] rather than pseudo-random numbers are used by
default. Empirically, this seems to accelerate convergence quite a bit, most noticeably
in the early stages of the integration.

From theoretical considerations it is of course known (see e.g. [8]) that quasi-random
sequences yield a convergence rate of O(lognd ns/ns), where nd is the number of
dimensions and ns the number of samples, which is much better than the usual
O(1/

√
ns) for ordinary Monte Carlo. But these convergence rates are meaningful

only for large ns and so it came as a pleasant surprise that the gains are considerable
already at the beginning of the sampling process. It shows that quasi-Monte Carlo
methods blend well with variance-reduction techniques such as importance sampling.

∗The D from the original name was dropped since the Cuba library uses double precision throughout.

2

Similarly, it was not clear from the outset whether the statistical standard error
would furnish a suitable error estimate since quasi-random numbers are decidedly
non-random in a number of respects. Yet also here empirical evidence suggests that
the standard error works just as well as for pseudo-random numbers.

• The present implementation allows the number of samples to be increased in each
iteration. With this one can mimic the strategy of calling Vegas with a small number
of samples first to ‘get the grid right’ and then using an alternate entry point to
perform the ‘full job’ on the same grid with a larger number of samples.

• The option to add simple stratified sampling on top of the importance sampling, as
proposed in the appendix of [2], has not been implemented in the present version.
Tests with the Vegas version from [9], which contains this feature, showed that con-
vergence was accelerated only when the original pseudo-random numbers were used
and that with quasi-random numbers convergence was in fact even slower in some
cases.

Vegas’ major weakness is that it uses a separable (product) weight function. As a conse-
quence, Vegas can offer significant improvements only as far as the integrand’s characteristic
regions are aligned with the coordinate axes.

3 Suave

Suave (short for subregion-adaptive vegas) uses Vegas-like importance sampling combined
with a globally adaptive subdivision strategy: Until the requested accuracy is reached,
the region with the largest error at the time is bisected in the dimension in which the
fluctuations of the integrand are reduced most. The number of new samples in each half
is prorated for the fluctuation in that half.

A similar method, known as recursive stratified sampling, is implemented in Miser [4].
Miser always samples a fixed number of points, however, which is somewhat undesirable
since it does not stop once the prescribed accuracy is reached.

Suave first samples the integration region in a Vegas-like step, i.e. using importance
sampling with a separable weight function. It then slices the integration region in two, as
Miser would do. Suave does not immediately recurse on those subregions, however, but
maintains a list of all subregions and selects the region with the largest absolute error for
the next cycle of sampling and subdivision. That is, Suave uses global error estimation
and terminates when the requested relative or absolute accuracy is attained.

The information on the weight function collected in one Vegas step is not lost. Rather,
the grid from which the weight function is computed is stretched and re-used on the
subregions. A region which is the result of m − 1 subdivisions thus has had m Vegas
iterations performed on it.

The improvements over Vegas and Miser come at a price, which is the amount of
memory required to hold all the samples. Memory consumption is not really severe on

3

modern hardware, however. The component that scales worst is the one proportional to
the number of samples, which is

8(nd + nc + 1)ns bytes ,

where nd is the number of dimensions of the integral, nc the number of components of the
integrand, and ns the number of samples. For a million samples on a scalar integrand of
10 variables, this works out to 96 megabytes – not all that enormous these days.

3.1 Description of the algorithm

As Suave is a new algorithm, the following description will be fairly detailed. For greater
notational clarity, nc-dimensional vectors are denoted with a vector arrow (~f) and nd-
dimensional vectors with boldface letters (x) in the following, where nd is the dimension
of the integral and nc the number of components of the integrand.

The essential inputs are εrel and εabs, the relative and absolute accuracies, nnew
s , the

number of samples added in each iteration, nmax
s , the maximum number of samples allowed,

and p, a flatness parameter described below.

Suave has a main loop which calls a Vegas-like sampling step. The main loop is respon-
sible for subdividing the subregions and maintaining the totals. The sampling step does
the actual sampling on the subregions and computes the region results.

3.1.1 Main loop

1. Initialize the random-number generator and allocate a data structure for the entire
integration region. Initialize its Vegas grid with equidistant bins.

2. Sample the entire integration region with nnew
s points. This gives an initial estimate

of the integral ~Itot, the variance ~σ 2
tot, and ~χ 2

tot.

3. Find the component c for which rc = σc,tot/max(εabs, εrel|Ic,tot|) is maximal.

If none of the rc’s exceeds unity, indicate success and return.

4. If the number of samples spent so far equals or exceeds nmax
s , indicate failure and

return.

5. Find the region r with the largest σ2
c .

6. Find the dimension d which minimizes Fc(r
d
L) + Fc(r

d
R), where rdL,R are the left and

right halves of r with respect to d. Fc(r
d
L,R) is the fluctuation of the samples that fall

into rdL,R and is computed as

Fc(r
d
L,R) =

[∥∥∥1 + F̃c(xi ∈ rdL,R)
∥∥∥
p

]2/3
=

[∑∣∣∣1 + F̃c(xi ∈ rdL,R)
∣∣∣p]2/(3p), (1)

4

where all samples xi that fall into the respective half are used in the norm/sum and
the single-sample fluctuation F̃c is defined as

F̃c(x) = w(x)

∣∣∣∣fc(x)− Ic(r)
Ic(r)

∣∣∣∣ |fc(x)− Ic(r)|
σc(r)

.

This empirical recipe combines the relative deviation from the region mean, (f−I)/I,
with the χ value, |f −I|/σ, weighted by the Vegas weight w corresponding to sample
x. Note that the Ic and σc values of the entire region r are used.

Samples strongly contribute to F the more they lie away from the predicted mean
and the more they lie out of the predicted error band. Tests have shown that large
values of p are beneficial for ‘flat’ integrands, whereas small values are preferred if
the integrand is ‘volatile’ and has high peaks. p has thus been dubbed a flatness
parameter. The effect comes from the fact that with increasing p, F becomes more
and more dominated by ‘outliers,’ i.e. points with a large F̃ .

The power 2/3 in Eq. (1) is also used in Miser, where it is motivated as the exponent
that gives the best variance reduction ([9], p. 315).

7. Refine the grid associated with r, i.e. incorporate the information gathered on the
integrand in the most recent sample over r into the weight function. This is done
precisely as in Vegas (see [2]), with the extension that if the integrand has more
than one component, the marginal densities are computed not from f 2 but from the
weighted sum†

f 2 =
nc∑
c=1

f 2
c

I2c,tot
.

8. Bisect r in dimension d:

Allocate a new region, rL, and copy to rL those of r’s samples falling into the left
half. Compute the Vegas grid for rL by appropriately “stretching” r’s grid, i.e. by
interpolating all grid points of r with values less than 1/2.

Set up rR for the right half analogously.

9. Sample rL with nL = max
(

Fc(rL)
Fc(rL)+Fc(rR)

nnew
s , nmin

s

)
and rR with nR = max(nnew

s −
nL, n

min
s) points, where nmin

s = 10.

†It is fairly obvious that scale-invariant quantities must be used in the sum, otherwise the component
with the largest absolute scale would dominate. It is less clear whether η0 = (

∫
fc dx)2 = I2c,tot, η1 =

(
∫
|fc|dx)2, or η2 =

∫
f2c dx (or any other) make the best weights. Empirically, η0 turns out to be both

slightly superior in convergence and easier to compute than η1 and η2 and has thus been chosen in Suave.
A possible explanation for this is that in cases where there are large compensations within the integral,

i.e. when
∫
fc dx �

∫
|fc|dx, it is particularly necessary for the overall accuracy that component c be

sampled accurately, and thus be given more weight in f2, and this is better accomplished by dividing f2c
by the “small” number η0 than by the “large” number η1 or η2.

5

10. To safeguard against underestimated errors, supplement the variances by the differ-
ence of the integral values in the following way:

σ2
c,new(rR,L) = σ2

c (rR,L)

(
1 +

∆c√
σ2
c (rL) + σ2

c (rR)

)2

+ ∆2
c

for each component c, where ~∆ = 1
4
|~I(rL) + ~I(rR)− ~I(r)|.

This acts as a penalty for regions whose integral value changes significantly by the
subdivision and effectively moves them up in the order of regions to be subdivided
next.

11. Update the totals: Subtract r’s integral, variance, and χ2-value from the totals and
add those of rL and rR.

12. Discard r, put rL and rR in the list of regions.

13. Go to Step 3.

3.1.2 Sampling step

The function which does the actual sampling is a modified Vegas iteration. It is invoked
with two arguments: r, the region to be sampled and nm, the number of new samples.

1. Sample a set of nm new points using the weight function given by the grid associated
with r. For a region which is the result of m−1 subdivisions, the list of samples now
consists of m sets of samples.

2. For each set of samples, compute the mean ~Ii and variance ~σ 2
i .

3. Compute the results for the region as

Ic =

∑m
i=1wi,cIi,c∑m
i=1wi,c

, σ2
c =

1∑m
i=1wi,c

, χ2
c =

1

σ2
c

[∑m
i=1wi,cI

2
i,c∑m

i=1wi,c

− I2c
]
,

where the inverse of the set variances are used as weights, wi,c = 1/σ2
i,c. This is

simply Gaussian error propagation.

For greater numerical stability, χ2
c is actually computed as

χ2
c =

m∑
i=1

wi,cI
2
i,c − Ic

m∑
i=1

wi,cIi,c =
m∑
i=2

wi,cIi,c(Ii,c − I1,c)− Ic
m∑
i=2

wi,c(Ii,c − I1,c) .

6

4 Divonne

Divonne uses stratified sampling for variance reduction, that is, it partitions the integration
region such that all subregions have an approximately equal value of a quantity called the
spread ~s, defined as

~s(r) =
1

2
V (r)

(
max
x∈r

~f(x)−min
x∈r

~f(x)
)
, (2)

where V (r) is the volume of region r. What sets Divonne apart from Suave is that the
minimum and maximum of the integrand are sought using methods from numerical opti-
mization. Particularly in high dimensions, the chance that one of the previously sampled
points lies in or even close to the true extremum is fairly small.

On the other hand, the numerical minimization is beset with the usual pitfalls, i.e.
starting from the lowest of a (relatively small) number of sampled points, Divonne will
move directly into the local minimum closest to the starting point, which may or may not
be close to the absolute minimum.

Divonne is a lot more complex than Suave and Vegas but also significantly faster for
many integrands. For details on the methods used in Divonne please consult the original
references [5]. New features with respect to the CERNLIB version (Divonne 4) are:

• Integration is possible in dimensions 2 through 33 (not 9 as before). Going to higher
dimensions is a matter of extending internal tables only.

• The possibility has been added to specify the location of possible peaks, if such are
known from analytical considerations. The idea here is to help the integrator find
the extrema of the integrand, and narrow peaks in particular are a challenge for the
algorithm. Even if only the approximate location is known, this feature of hinting
the integrator can easily cut an order of magnitude out of the number of samples
needed to reach the required accuracy for complicated integrands. The points can be
specified either statically, by passing a list of points at the invocation, or dynamically,
through a subroutine called for each subregion.

• Often the integrand subroutine cannot sample points lying on or very close to the
integration border. This can be a problem with Divonne which actively searches for
the extrema of the integrand and homes in on peaks regardless of whether they lie on
the border. The user may however specify a border region in which integrand values
are not obtained directly, but extrapolated from two points inside the ‘safe’ interior.

• The present algorithm works in three phases, not two as before. Phase 1 performs the
partitioning as outlined above. From the preliminary results obtained in this phase,
Divonne estimates the number of samples necessary to reach the desired accuracy
in phase 2, the final integration phase. Once the phase-2 sample for a particular
subregion is in, a χ2 test is used to assess whether the two sample averages are
consistent with each other within their error bounds. Subregions which fail this test

7

move on to phase 3, the refinement phase, where they can be subdivided again or
sampled a third time with more points, depending on the parameters set by the user.

• For all three phases the user has a selection of methods to obtain the integral estimate:
a Korobov [10] or Sobol [7] quasi-random sample of given size, a Mersenne Twister
[11] or Ranlux [12] pseudo-random sample of given size, and the cubature rules of
Genz and Malik [13] of degree 7, 9, 11, and 13 that are also used in Cuhre. The latter
are embedded rules and hence provide an intrinsic error estimate (that is, an error
estimate not based on the spread). When this independent error estimate is available,
it supersedes the spread-based error when computing the total error. Also, regions
whose spread-based error exceeds the intrinsic error are selected for refinement, too.

In spite of these novel options, the cubature rules of the original Divonne algorithm
were not implemented.

Due to its complexity, the new Divonne implementation was painstakingly tested
against the CERNLIB routine to make sure it produces the same results before adding
the new features.

5 Cuhre

Cuhre is a deterministic algorithm which uses one of several cubature rules of polynomial
degree in a globally adaptive subdivision scheme. The subdivision algorithm is similar to
Suave’s (see Sect. 3.1.1) and works as follows:

While the total estimated error exceeds the requested bounds:

1) choose the region with the largest estimated error,

2) bisect this region along the axis with the largest fourth difference,

3) apply the cubature rule to the two subregions,

4) merge the subregions into the list of regions and update the totals.

Details on the algorithm and on the cubature rules employed in Cuhre can be found
in the original references [6]. The present implementation offers only superficial improve-
ments, such as an interface consistent with the other Cuba routines and a slightly simpler
invocation, e.g. one does not have to allocate a workspace.

In moderate dimensions Cuhre is very competitive, particularly if the integrand is
well approximated by polynomials. As the dimension increases, the number of points
sampled by the cubature rules rises considerably, however, and by the same token the
usefulness declines. For the lower dimensions, the actual number of points that are spent
per invocation of the basic integration rule are listed in the following table.

number of dimensions 4 5 6 7 8 9 10 11 12
points in degree-7 rule 65 103 161 255 417 711 1265 2335 4433
points in degree-9 rule 153 273 453 717 1105 1689 2605 4117 6745

8

6 Download and Compilation

The Cuba package can be downloaded from http://feynarts.de/cuba. The gzipped tar
file unpacks into a directory Cuba-m.n. Change into this directory and type

./configure

make

This should create

libcuba.a — the Cuba library,
Vegas, Suave, Divonne, Cuhre — the MathLink executables,
demo-c, demo-fortran — the demonstration programs,
partview — the partition viewer.

Cuba can also be built in parts: “make lib” builds only the Cuba library, “make math”
builds only the MathLink executables, “make demos” builds only the demo programs, and
“make tools” builds only the partition viewer.

The MathLink executables require mcc, the MathLink compiler, and the partition
viewer needs Qt. Compilation of the corresponding parts will be switched off by default if
configure does not find these tools.

The code is C99 compliant and compiles flawlessly with the GNU C compiler, versions
2.95 and higher. Configure should take care of most C99 features. In particular if it finds
that the C compiler cannot handle variable-size arrays, it will fix the array sizes at compile
time. In this case, the maximum number of dimensions can be chosen with the configure
option --with-maxdim=nmax

d (default: 16) and the maximum number of components of the
integrand with --with-maxcomp=nmax

c (default: 4).

Linking Fortran or C/C++ code that uses one of the algorithms is straightforward,
just add -lcuba (for the Cuba library) and -lm (for the math library) to the compiler
command line, as in

f77 -o myexecutable mysource.f -lcuba -lm

cc -o myexecutable mysource.c -lcuba -lm

The demo subdirectory contains the source for the demonstration programs in Fortran 77,
C, and Mathematica, as well as the test suite used in Sect. 9, which is also written in
Mathematica.

7 User Manual

7.1 Usage in Fortran

Although written in C, the declarations have been chosen such that the routines are directly
accessible from Fortran, i.e. no wrapper code is needed. In fact, Vegas, Suave, Divonne,
and Cuhre can be called as if they were Fortran subroutines respectively declared as

9

subroutine vegas(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& nstart, nincrease, nbatch, gridno, statefile, spin,

& neval, fail, integral, error, prob)

subroutine suave(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& nnew, nmin, flatness, statefile, spin,

& nregions, neval, fail, integral, error, prob)

subroutine divonne(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& key1, key2, key3, maxpass,

& border, maxchisq, mindeviation,

& ngiven, ldxgiven, xgiven, nextra, peakfinder,

& statefile, spin,

& nregions, neval, fail, integral, error, prob)

subroutine cuhre(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, mineval, maxeval,

& key, statefile, spin,

& nregions, neval, fail, integral, error, prob)

7.1.1 Common Arguments

• integer ndim 〈in〉, the number of dimensions of the integral.

• integer ncomp 〈in〉, the number of components of the integrand.

• integer integrand 〈in〉, the integrand. The external function which computes the
integrand is expected to be declared as

integer function integrand(ndim, x, ncomp, f, userdata, nvec, core)

integer ndim, ncomp, nvec, core

double precision x(ndim,nvec), f(ncomp,nvec)

The integrand receives nvec samples in x and is supposed to fill the array f with
the corresponding integrand values. Note that nvec indicates the actual number of
points passed to the integrand here and may be smaller than the nvec given to the
integrator.

The return value is irrelevant unless it is −999, in the case of which the integration
will be aborted immediately. This might happen if a parameterized integrand turns
out not to yield sensible values for a particular parameter set (passed e.g. through
userdata).

10

The worker process the integrand is running on is indicated in core, where core < 0
indicates an Accelerator, core > 0 a regular (CPU) core, and 32768 the master itself
(more details in Sect. 8.2.2).

The latter three arguments, userdata, nvec, and core are optional and may be
omitted if unused, i.e. the integrand is minimally declared (for nvec = 1) as

integer function integrand(ndim, x, ncomp, f)

integer ndim, ncomp

double precision x(ndim), f(ncomp)

• (arbitrary type) userdata 〈in〉, user data passed to the integrand. Unlike its
counterpart in the integrand definition, this argument must be present though it
may contain a dummy value, e.g. 0.

• integer nvec 〈in〉, The maximum number of points to be given to the integrand
routine in each invocation. Usually this is 1 but if the integrand can profit from e.g.
SIMD vectorization, a larger value can be chosen.

• double precision epsrel, epsabs 〈in〉, the requested relative and absolute accu-
racies. The integrator tries to find an estimate Î for the integral I which for every
component c fulfills |Îc − Ic| 6 max(εabs, εrel|Ic|).

• integer flags 〈in〉, flags governing the integration:

– Bits 0 and 1 are taken as the verbosity level, i.e. 0 to 3, unless the CUBAVERBOSE

environment variable contains an even higher value (used for debugging).

Level 0 does not print any output, level 1 prints ‘reasonable’ information on the
progress of the integration, level 2 also echoes the input parameters, and level
3 further prints the subregion results (if applicable).

– Bit 2 = 0, all sets of samples collected on a subregion during the various itera-
tions or phases contribute to the final result.

Bit 2 = 1, only the last (largest) set of samples is used in the final result.

– (Vegas and Suave only) Bit 3 = 0, apply additional smoothing to the importance
function, this moderately improves convergence for many integrands,

Bit 3 = 1, use the importance function without smoothing, this should be chosen
if the integrand has sharp edges.

– Bit 4 = 0, delete the state file (if one is chosen) when the integration terminates
successfully,

Bit 4 = 1, retain the state file.

– Bits 8–31 =: level determines the random-number generator (see below).

To select e.g. last samples only and verbosity level 2, pass 6 = 4 + 2 for the flags.

11

• integer seed 〈in〉, the seed for the pseudo-random-number generator.

The random-number generator is chosen as follows:

seed level Generator
(bits 8–31 of flags)

zero N/A Sobol (quasi-random),
non-zero zero Mersenne Twister (pseudo-random),
non-zero non-zero Ranlux (pseudo-random).

Ranlux implements Marsaglia and Zaman’s 24-bit RCARRY algorithm with genera-
tion period p, i.e. for every 24 generated numbers used, another p− 24 are skipped.
The luxury level is encoded in level as follows:

– Level 1 (p = 48): very long period, passes the gap test but fails spectral test.

– Level 2 (p = 97): passes all known tests, but theoretically still defective.

– Level 3 (p = 223): any theoretically possible correlations have very small chance
of being observed.

– Level 4 (p = 389): highest possible luxury, all 24 bits chaotic.

Levels 5–23 default to 3, values above 24 directly specify the period p. Note that Ran-
lux’s original level 0, (mis)used for selecting Mersenne Twister in Cuba, is equivalent
to level = 24.

• integer mineval 〈in〉, the minimum number of integrand evaluations required.

• integer maxeval 〈in〉, the (approximate) maximum number of integrand evalua-
tions allowed.

• character*(*) statefile 〈in〉, a filename for storing the internal state. To not
store the internal state, put "" (empty string) or %VAL(0) (null pointer).

Cuba can store its entire internal state (i.e. all the information to resume an inter-
rupted integration) in an external file. The state file is updated after every iteration.
If, on a subsequent invocation, a Cuba routine finds a file of the specified name, it
loads the internal state and continues from the point it left off. Needless to say, using
an existing state file with a different integrand generally leads to wrong results.

This feature is useful mainly to define ‘check-points’ in long-running integrations
from which the calculation can be restarted.

Once the integration reaches the prescribed accuracy, the state file is removed, unless
bit 4 of flags (see above) explicitly requests that it be kept.

• integer*8 spin 〈in〉, the ‘spinning cores’ pointer, which has three options:

12

– A value of -1 or %VAL(0) (null pointer) means that the integrator completely
takes care of starting and terminating child processes for the integration (if avail-
able/enabled), i.e. after the integrator returns there are no child processes run-
ning any longer. Note that a ‘naive’ -1 (which is an integer, not an integer*8)
is explicitly allowed.

– A zero-initialized variable spin instructs the integrator to start child processes
for the integration but keep them running and store the ‘spinning cores’ pointer
in spin on exit. Take care that in this case you have to explicitly terminate the
child processes using cubawait later on (see Sect. 8.2.1).

– A non-zero variable spin means that the cores are already running as the result
of some prior integration or an explicit cubafork call (see Sect. 8.2.1).

The actual type of spin is irrelevant, the variable must merely be wide enough to
store a C void *.

• integer nregions 〈out 〉, the actual number of subregions needed (not present in
Vegas).

• integer neval 〈out 〉, the actual number of integrand evaluations needed.

• integer fail 〈out 〉, an error flag:

– fail = 0, the desired accuracy was reached,

– fail = −1, dimension out of range,

– fail > 0, the accuracy goal was not met within the allowed maximum number of
integrand evaluations. While Vegas, Suave, and Cuhre simply return 1, Divonne
can estimate the number of points by which maxeval needs to be increased to
reach the desired accuracy and returns this value.

• double precision integral(ncomp) 〈out 〉, the integral of integrand over the unit
hypercube.

• double precision error(ncomp) 〈out 〉, the presumed absolute error of integral.

• double precision prob(ncomp) 〈out 〉, the χ2-probability (not the χ2-value itself!)
that error is not a reliable estimate of the true integration error‡.

‡To judge the reliability of the result expressed through prob, remember that it is the null hypothesis
that is tested by the χ2 test, which is that error is a reliable estimate. In statistics, the null hypothesis
may be rejected only if prob is fairly close to unity, say prob > .95.

13

7.1.2 Vegas-specific Arguments

• integer nstart 〈in〉, the number of integrand evaluations per iteration to start
with.

• integer nincrease 〈in〉, the increase in the number of integrand evaluations per
iteration.

• integer nbatch 〈in〉, the batch size for sampling.

Vegas samples points not all at once, but in batches of size nbatch, to avoid exces-
sive memory consumption. 1000 is a reasonable value, though it should not affect
performance too much.

• integer gridno 〈in〉, the slot in the internal grid table.

It may accelerate convergence to keep the grid accumulated during one integration for
the next one, if the integrands are reasonably similar to each other. Vegas maintains
an internal table with space for ten grids for this purpose. The slot in this grid is
specified by gridno.

If a grid number between 1 and 10 is selected, the grid is not discarded at the end of
the integration, but stored in the respective slot of the table for a future invocation.
The grid is only re-used if the dimension of the subsequent integration is the same
as the one it originates from.

In repeated invocations it may become necessary to flush a slot in memory, in which
case the negative of the grid number should be set.

Vegas actually passes the integrand two more arguments, i.e. the integrand subroutine
is really declared as

integer function integrand(ndim, x, ncomp, f, userdata, nvec, core,

weight, iter)

integer ndim, ncomp, nvec, core, iter

double precision x(ndim,nvec), f(ncomp,nvec), weight(nvec)

where weight contains the weight of the point being sampled and iter the current iteration
number. These extra arguments may safely be ignored, however.

7.1.3 Suave-specific Arguments

• integer nnew 〈in〉, the number of new integrand evaluations in each subdivision.

• integer nmin 〈in〉, the minimum number of samples a former pass must contribute
to a subregion to be considered in that region’s compound integral value. Increasing
nmin may reduce jumps in the χ2 value.

14

• double precision flatness 〈in〉, the parameter p in Eq. (1), i.e. the type of norm
used to compute the fluctuation of a sample. This determines how prominently ‘out-
liers,’ i.e. individual samples with a large fluctuation, figure in the total fluctuation,
which in turn determines how a region is split up. As suggested by its name, flatness
should be chosen large for ‘flat’ integrands and small for ‘volatile’ integrands with
high peaks. Note that since flatness appears in the exponent, one should not use
too large values (say, no more than a few hundred) lest terms be truncated internally
to prevent overflow.

Like Vegas, Suave also passes the two optional arguments weight and iter to the
integrand (see Sect. 7.1.2).

7.1.4 Divonne-specific Arguments

• integer key1 〈in〉, determines sampling in the partitioning phase:

key1 = 7, 9, 11, 13 selects the cubature rule of degree key1. Note that the degree-11
rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values of key1, a quasi-random sample of n1 = |key1| points is used, where
the sign of key1 determines the type of sample,

– key1 > 0, use a Korobov quasi-random sample,

– key1 < 0, use a “standard” sample (a Sobol quasi-random sample if seed = 0,
otherwise a pseudo-random sample).

• integer key2 〈in〉, determines sampling in the final integration phase:

key2 = 7, 9, 11, 13 selects the cubature rule of degree key2. Note that the degree-11
rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values of key2, a quasi-random sample is used, where the sign of key2

determines the type of sample,

– key2 > 0, use a Korobov quasi-random sample,

– key2 < 0, use a “standard” sample (see description of key1 above),

and n2 = |key2| determines the number of points,

– n2 > 40, sample n2 points,

– n2 < 40, sample n2 nneed points, where nneed is the number of points needed to
reach the prescribed accuracy, as estimated by Divonne from the results of the
partitioning phase.

• integer key3 〈in〉, sets the strategy for the refinement phase:

key3 = 0, do not treat the subregion any further.

15

key3 = 1, split the subregion up once more.

Otherwise, the subregion is sampled a third time with key3 specifying the sampling
parameters exactly as key2 above.

• integer maxpass 〈in〉, controls the thoroughness of the partitioning phase: The
partitioning phase terminates when the estimated total number of integrand evalu-
ations (partitioning plus final integration) does not decrease for maxpass successive
iterations.

A decrease in points generally indicates that Divonne discovered new structures of
the integrand and was able to find a more effective partitioning. maxpass can be
understood as the number of ‘safety’ iterations that are performed before the par-
tition is accepted as final and counting consequently restarts at zero whenever new
structures are found.

• double precision border 〈in〉, the width of the border of the integration region.
Points falling into this border region will not be sampled directly, but will be extrap-
olated from two samples from the interior. Use a non-zero border if the integrand
subroutine cannot produce values directly on the integration boundary.

• double precision maxchisq 〈in〉, the maximum χ2 value a single subregion is al-
lowed to have in the final integration phase. Regions which fail this χ2 test and whose
sample averages differ by more than mindeviation move on to the refinement phase.

• double precision mindeviation 〈in〉, a bound, given as the fraction of the re-
quested error of the entire integral, which determines whether it is worthwhile fur-
ther examining a region that failed the χ2 test. Only if the two sampling averages
obtained for the region differ by more than this bound is the region further treated.

• integer ngiven 〈in〉, the number of points in the xgiven array.

• integer ldxgiven 〈in〉, the leading dimension of xgiven, i.e. the offset between one
point and the next in memory.

• double precision xgiven(ldxgiven,ngiven) 〈in〉, a list of points where the inte-
grand might have peaks. Divonne will consider these points when partitioning the
integration region. The idea here is to help the integrator find the extrema of the in-
tegrand in the presence of very narrow peaks. Even if only the approximate location
of such peaks is known, this can considerably speed up convergence.

• integer nextra 〈in〉, the maximum number of extra points the peak-finder subrou-
tine will return. If nextra is zero, peakfinder is not called and an arbitrary object
may be passed in its place, e.g. just 0.

• external peakfinder 〈in〉, the peak-finder subroutine. This subroutine is called
whenever a region is up for subdivision and is supposed to point out possible peaks

16

lying in the region, thus acting as the dynamic counterpart of the static list of points
supplied in xgiven. It is expected to be declared as

subroutine peakfinder(ndim, b, n, x, userdata)

integer ndim, n

double precision b(2,ndim)

double precision x(ldxgiven,n)

The bounds of the subregion are passed in the array b, where b(1,d) is the lower and
b(2,d) the upper bound in dimension d . On entry, n specifies the maximum number
of points that may be written to x. On exit, n must contain the actual number of
points in x.

Divonne actually passes the integrand one more argument, i.e. the integrand subroutine is
really declared as

subroutine integrand(ndim, x, ncomp, f, userdata, nvec, core,

phase)

integer ndim, ncomp, nvec, core, phase

double precision x(ndim,nvec), f(ncomp,nvec)

The last argument, phase, indicates the integration phase:

• 0, sampling of the points in xgiven,

• 1, partitioning phase,

• 2, final integration phase,

• 3, refinement phase.

This information might be useful if the integrand takes long to compute and a sufficiently
accurate approximation of the integrand is available. The actual value of the integral is only
of minor importance in the partitioning phase, which is instead much more dependent on
the peak structure of the integrand to find an appropriate tessellation. An approximation
which reproduces the peak structure while leaving out the fine details might hence be a
perfectly viable and much faster substitute when phase < 2.

In all other instances, phase can be ignored and it is entirely admissible to define the
integrand without it.

7.1.5 Cuhre-specific Arguments

• integer key 〈in〉, chooses the basic integration rule:

key = 7, 9, 11, 13 selects the cubature rule of degree key. Note that the degree-11
rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values, the default rule is taken, which is the degree-13 rule in 2 dimensions,
the degree-11 rule in 3 dimensions, and the degree-9 rule otherwise.

17

7.1.6 Visualizing the Tessellation

Suave, Divonne, and Cuhre work by dividing the integration region into subregions for
integration. When verbosity level 3 is selected in the flags, the actual tessellation is written
out on screen and can be visualized with the partview tool. To this end, the output of the
program invoking Cuba is piped through partview, e.g.

mycubaprogram | partview 1 2 1 3

opens a window with two tabs showing the 1–2 and 1–3 plane of the tessellation. The
saturation of the colours corresponds to the area of the region, i.e. smaller regions are
displayed in a darker shade.

7.2 Usage in C/C++

Being written in C, the algorithms can of course be used in C/C++ directly. The decla-
rations are as follows:

typedef int (*integrand_t)(const int *ndim, const double x[],

const int *ncomp, double f[], void *userdata);

typedef void (*peakfinder_t)(const int *ndim, const double b[],

int *n, double x[], void *userdata);

void Vegas(const int ndim, const int ncomp,

integrand_t integrand, void *userdata, const int nvec,

const double epsrel, const double epsabs,

const int flags, const int seed,

const int mineval, const int maxeval,

const int nstart, const int nincrease, const int nbatch,

const int gridno, const char *statefile, void *spin,

int *neval, int *fail,

double integral[], double error[], double prob[])

void Suave(const int ndim, const int ncomp,

integrand_t integrand, void *userdata, const int nvec,

const double epsrel, const double epsabs,

const int flags, const int seed,

const int mineval, const int maxeval,

const int nnew, const int nmin,

const double flatness, const char *statefile, void *spin,

int *nregions, int *neval, int *fail,

double integral[], double error[], double prob[])

18

void Divonne(const int ndim, const int ncomp,

integrand_t integrand, void *userdata, const int nvec,

const double epsrel, const double epsabs,

const int flags, const int seed,

const int mineval, const int maxeval,

const int key1, const int key2, const int key3,

const int maxpass, const double border,

const double maxchisq, const double mindeviation,

const int ngiven, const int ldxgiven, double xgiven[],

const int nextra, peakfinder_t peakfinder,

const char *statefile, void *spin,

int *nregions, int *neval, int *fail,

double integral[], double error[], double prob[])

void Cuhre(const int ndim, const int ncomp,

integrand_t integrand, void *userdata, const int nvec,

const double epsrel, const double epsabs,

const int flags,

const int mineval, const int maxeval,

const int key, const char *statefile, void *spin,

int *nregions, int *neval, int *fail,

double integral[], double error[], double prob[])

These prototypes are contained in cuba.h which should (in C) or must (in C++) be
included when using the Cuba routines. The arguments are as in the Fortran case, with the
obvious translations, e.g. double precision = double. Note, however, the declarations
of the integrand and peak-finder functions, which expect pointers to integers rather than
integers. This is required for compatibility with Fortran.

The integrand_t type glosses over the fact that the extra nvec argument is routinely
passed to the integrand and neither does it mention the extra arguments passed by Vegas,
Suave, and Divonne (see Sects. 7.1.2 and 7.1.4). This is usually just what is needed for
‘simple’ invocations, i.e. with the ‘correct’ prototypes the compiler would only generate
unnecessary warnings (in C) or errors (in C++). In the rare cases where the integrand
actually has more arguments, an explicit typecast to integrand_t must be used in the
invocation. In the presence of an nvec argument, the x and f arguments are actually
two-dimensional arrays, x[*nvec][*ndim] and f[*nvec][*ncomp].

7.3 Usage in Mathematica

The Mathematica versions are based on essentially the same C code and communicate with
Mathematica via the MathLink API. When building the package, the executables Vegas,
Suave, Divonne, and Cuhre are compiled for use in Mathematica. In Mathematica one
first needs to load them with the Install function, as in

19

Install["Divonne"]

which makes a Mathematica function of the same name available. These functions are used
almost like NIntegrate, only some options are different. For example,

Vegas[x^2/(Cos[x + y + 1] + 5), {x,0,5}, {y,0,5}]

integrates a scalar function, or

Suave[{Sin[z] Exp[-x^2 - y^2],

Cos[z] Exp[-x^2 - y^2]}, {x,-1,1}, {y,-1,3}, {z,0,1}]

integrates a vector. As is evident, the integration region can be chosen different from the
unit hypercube. Innermore boundaries may depend on outermore integration variables,
e.g. Cuhre[1, {x,0,1}, {y,0,x}] gives the area of the unit triangle.

The sampling function uses MapSample to map the integrand over the data points. This
is by default set to Map, but can be changed (after Install) e.g. to ParallelMap to take
advantage of parallelization (see Sect. 8 for more details).

The functions return a list which contains the results for each component of the inte-
grand in a sublist {integral estimate, estimated absolute error, χ2 probability}. For the
Suave example above this would be

{{1.1216, 0.000991577, 0.0000104605},

{2.05246, 0.00146661, 0.00920716}}

The other parameters are specified via the following options. Default values are given on
the right-hand sides of the rules.

7.3.1 Common Options

• PrecisionGoal -> 3, the number of digits of relative accuracy to seek, that is,
εrel = 10−PrecisionGoal.

• AccuracyGoal -> 12, the number of digits of absolute accuracy to seek, that is,
εabs = 10−AccuracyGoal. The integrator tries to find an estimate Î for the integral I
which for every component c fulfills |Îc − Ic| 6 max(εabs, εrelIc).

• MinPoints -> 0, the minimum number of integrand evaluations required.

• MaxPoints -> 50000, the (approximate) maximum number of integrand evaluations
allowed.

• Verbose -> 1, how much information to print on intermediate results, can take
values from 0 to 3.

20

Level 0 does not print any output, level 1 prints ‘reasonable’ information on the
progress of the integration, level 2 also echoes the input parameters, and level 3 fur-
ther prints the subregion results (if applicable). Note that the subregion boundaries
in the level-3 printout refer to the unit hypercube, i.e. are possibly scaled with respect
to the integration limits passed to Mathematica. This is because the underlying C
code, which emits the output, is unaware of any scaling of the integration region,
which is done entirely in Mathematica.

• Final -> All or Last, whether only the last (largest) or all sets of samples col-
lected on a subregion during the various iterations or phases contribute to the final
result.

• PseudoRandom -> False, whether pseudo-random numbers are used for sampling in-
stead of Sobol quasi-random numbers. Values True and 0 select the Mersenne Twister
algorithm, any other integer n chooses Ranlux with luxury level n (see Sect. 7.1.1).

• PseudoRandomSeed -> Automatic, the seed for the pseudo-random-number genera-
tor.

• Regions -> False, whether to return the tessellation of the integration region (thus
not present in Vegas, which does not partition the integration region).

If Regions -> True is chosen, a two-component list is returned, where the first
element is the list of regions, and the second element is the integration result as
described above. Each region is specified in the form Region[xll, xur, res, df], where
xll and xur are the multidimensional equivalents of the lower left and upper right
corner, res is the integration result for the subregion, given in the same form as the
total result but with the χ2 value instead of the χ2 probability, and df are the degrees
of freedom corresponding to the χ2 values.

Cuhre cannot state a χ2 value separately for each region, hence the χ2 values and
degrees of freedom are omitted from the Region information.

• Compiled -> True, whether to compile the integrand function before use. Note two
caveats:

– The function values still have to pass through the MathLink interface, and in the
course of this are truncated to machine precision. Not compiling the integrand
will thus in general not deliver more accurate results.

– Compilation should be switched off if the compiled integrand shows unexpected
behaviour. As the Mathematica online help points out, “the number of times
and the order in which objects are evaluated by Compile may be different from
ordinary Mathematica code.”

21

7.3.2 Vegas-specific Options

• NStart -> 1000, the number of integrand evaluations per iteration to start with.

• NIncrease -> 500, the increase in the number of integrand evaluations per iteration.

• NBatch -> 1000, the number of points sent in one MathLink packet to be sampled by
Mathematica. This setting will at most affect performance and should not normally
need to be changed.

• GridNo -> 0, the slot in the internal grid table.

It may accelerate convergence to keep the grid accumulated during one integration for
the next one, if the integrands are reasonably similar to each other. Vegas maintains
an internal table with space for ten grids for this purpose. If a GridNo between
1 and 10 is chosen, the grid is not discarded at the end of the integration, but
stored for a future invocation. The grid is only re-used if the dimension of the
subsequent integration is the same as the one it originates from. A negative grid
number initializes the indicated slot before the integration (for details see Sect. 7.1.2).

• StateFile -> "", the file name for storing the internal state. If a non-empty string is
given here, Vegas will store its entire internal state (i.e. all the information to resume
an interrupted integration) in this file after every iteration. If, on a subsequent
invocation, Vegas finds a file of the specified name, it loads the internal state and
continues from the point it left off. Needless to say, using an existing state file with
a different integrand generally leads to wrong results.

This feature is useful mainly to define ‘check-points’ in long-running integrations
from which the calculation can be restarted.

• RetainStateFile -> False, whether the state file shall be kept even if the integra-
tion terminates normally, i.e. reaches either the prescribed accuracy or the maximum
number of points.

• During the evaluation of the integrand, the global variable $Weight is set to the
weight of the point being sampled and $Iteration to the current iteration number.

7.3.3 Suave-specific Options

• NNew -> 1000, the number of new integrand evaluations in each subdivision.

• NMin -> 2, the minimum number of samples a former pass must contribute to a
subregion to be considered in that region’s compound integral value. Increasing
NMin may reduce jumps in the χ2 value.

22

• Flatness -> 50, the parameter p in Eq. (1), i.e. the type of norm used to compute
the fluctuation of a sample. This determines how prominently ‘outliers,’ i.e. individ-
ual samples with a large fluctuation, figure in the total fluctuation, which in turn
determines how a region is split up. As suggested by its name, Flatness should be
chosen large for ‘flat’ integrands and small for ‘volatile’ integrands with high peaks.
Note that since Flatness appears in the exponent, one should not use too large val-
ues (say, no more than a few hundred) lest terms be truncated internally to prevent
overflow.

• During the evaluation of the integrand, the global variable $Weight is set to the
weight of the point being sampled and $Iteration to the current iteration number.

7.3.4 Divonne-specific Options

• Key1 -> 47, an integer which governs sampling in the partitioning phase:

Key1 = 7, 9, 11, 13 selects the cubature rule of degree Key1. Note that the degree-11
rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values of Key1, a quasi-random sample of n1 = |Key1| points is used, where
the sign of Key1 determines the type of sample,

– Key1 > 0, use a Korobov quasi-random sample,

– Key1 < 0, use a “standard” sample (a Sobol quasi-random sample in the case
PseudoRandom -> False, otherwise a pseudo-random sample).

• Key2 -> 1, an integer which governs sampling in the final integration phase:

Key2 = 7, 9, 11, 13 selects the cubature rule of degree Key2. Note that the degree-11
rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values of Key2, a quasi-random sample is used, where the sign of Key2

determines the type of sample,

– Key2 > 0, use a Korobov quasi-random sample,

– Key2 < 0, use a “standard” sample (see description of Key1 above),

and n2 = |Key2| determines the number of points,

– n2 > 40, sample n2 points,

– n2 < 40, sample n2 nneed points, where nneed is the number of points needed to
reach the prescribed accuracy, as estimated by Divonne from the results of the
partitioning phase.

• Key3 -> 1, an integer which sets the strategy for the refinement phase:

Key3 = 0, do not treat the subregion any further.

23

Key3 = 1, split the subregion up once more.

Otherwise, the subregion is sampled a third time with Key3 specifying the sampling
parameters exactly as Key2 above.

• MaxPass -> 5, the number of passes after which the partitioning phase terminates.
The partitioning phase terminates when the estimated total number of integrand
evaluations (partitioning plus final integration) does not decrease for MaxPass suc-
cessive iterations.

A decrease in points generally indicates that Divonne discovered new structures of
the integrand and was able to find a more effective partitioning. MaxPass can be
understood as the number of ‘safety’ iterations that are performed before the par-
tition is accepted as final and counting consequently restarts at zero whenever new
structures are found.

• Border -> 0, the width of the border of the integration region. Points falling into
this border region are not sampled directly, but are extrapolated from two samples
from the interior. Use a non-zero Border if the integrand function cannot produce
values directly on the integration boundary.

The border width always refers to the unit hypercube, i.e. it is not rescaled if the
integration region is not the unit hypercube.

• MaxChisq -> 10, the maximum χ2 value a single subregion is allowed to have in the
final integration phase. Regions which fail this χ2 test and whose sample averages
differ by more than MinDeviation move on to the refinement phase.

• MinDeviation -> .25, a bound, given as the fraction of the requested error of the
entire integral, which determines whether it is worthwhile further examining a region
that failed the χ2 test. Only if the two sampling averages obtained for the region
differ by more than this bound is the region further treated.

• Given -> {}, a list of points where the integrand might have peaks. A point is a list
of nd real numbers, where nd is the dimension of the integral.

Divonne will consider these points when partitioning the integration region. The idea
here is to help the integrator find the extrema of the integrand in the presence of
very narrow peaks. Even if only the approximate location of such peaks is known,
this can considerably speed up convergence.

• NExtra -> 0, the maximum number of points that will be considered in the output
of the PeakFinder function.

• PeakFinder -> ({}&), the peak-finder function. This function is called whenever a
region is up for subdivision and is supposed to point out possible peaks lying in the
region, thus acting as the dynamic counterpart of the static list of points supplied
with Given. It is invoked with two arguments, the multidimensional equivalents of

24

the lower left and upper right corners of the region being investigated, and must
return a (possibly empty) list of points. A point is a list of nd real numbers, where
nd is the dimension of the integral.

7.3.5 Cuhre-specific Options

• Key -> 0, chooses the basic integration rule:

Key = 7, 9, 11, 13 selects the cubature rule of degree Key. Note that the degree-11
rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values, the default rule is taken, which is the degree-13 rule in 2 dimensions,
the degree-11 rule in 3 dimensions, and the degree-9 rule otherwise.

7.3.6 Visualizing the Tessellation

Suave, Divonne, and Cuhre work by dividing the integration region into subregions for
integration. The tessellation is returned together with the integration results when the
option Regions -> True is set. Such output can be visualized using the Mathematica
program partview.m that comes with Cuba. The invocation is e.g.

result = Divonne[..., Regions -> True]

<< tools/partview.m

PartView[result, 1, 2]

which displays the 1–2 plane of the tessellation. The saturation of the colours corresponds
to the area of the region, i.e. smaller regions are displayed in a darker shade.

7.4 Long-integer Versions

For both Fortran and C/C++ there exist versions of the integration routines that take 64-
bit integers for all number-of-points-type quantities. These should be used in cases where
convergence is not reached within the ordinary 32-bit integer range (231 − 1).

The long-integer versions are distinguished by the “ll” prefix. Their specific invocations
are, in Fortran,

subroutine llvegas(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& nstart, nincrease, nbatch, gridno, statefile, spin,

& neval, fail, integral, error, prob)

subroutine llsuave(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& nnew, nmin, flatness, statefile, spin,

& nregions, neval, fail, integral, error, prob)

25

subroutine lldivonne(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& key1, key2, key3, maxpass,

& border, maxchisq, mindeviation,

& ngiven, ldxgiven, xgiven, nextra, peakfinder,

& statefile, spin,

& nregions, neval, fail, integral, error, prob)

subroutine llcuhre(ndim, ncomp, integrand, userdata, nvec,

& epsrel, epsabs, flags, seed, mineval, maxeval,

& key, statefile, spin,

& nregions, neval, fail, integral, error, prob)

The correspondences for C/C++ are obvious and are given explicitly in the include file
cuba.h. The arguments are as for the normal versions except that all underlined variables
are of type integer*8 in Fortran and long long int in C/C++.

8 Parallelization

Numerical integration is perfectly suited for parallel execution, which can significantly
speed up the computation as it generally incurs only a very small overhead. The paral-
lelization procedure is rather different in Fortran/C/C++ and in Mathematica. We shall
deal with the latter first because it needs only a short explanation. The remainder of this
chapter is then devoted to the Fortran/C/C++ case.

8.1 Parallelization in Mathematica

The Mathematica version of Cuba performs its sampling through a function MapSample.
By default this is identical to Map, i.e. the serial version, so to parallelize one merely needs
to redefine MapSample = ParallelMap (after loading Cuba).

If the integrand depends on user-defined symbols or functions, their definitions must be
distributed to the workers beforehand using DistributeDefinitions and likewise required
packages must be loaded with ParallelNeeds instead of Needs; this is explained in detail
in the Mathematica manual.

8.2 Parallelization in Fortran and C/C++

In Fortran and C/C++ the Cuba library can (and usually does) automatically parallelize
the sampling of the integrand. It parallelizes through fork and wait which, though slightly
less performant than pthreads, do not require reentrant code. (Reentrancy may not even be
under full control of the programmer, for example Fortran’s I/O is usually non-reentrant.)

26

Worker processes are started and shut down only as few times as possible, however, so the
performance penalty is really quite minor even for non-native fork implementations such as
Cygwin’s. Parallelization is not available on native Windows for lack of the fork function.

The communication of samples to and from the workers happens through IPC shared
memory (shmget and colleagues), or if that is not available, through a socketpair (two-
way pipe). Remarkably, the former’s anticipated performance advantage turned out to be
hardly perceptible. Possibly there are cache-coherence issues introduced by several workers
writing simultaneously to the same shared-memory area.

8.2.1 Starting and stopping the workers

The workers are usually started and stopped automatically by Cuba’s integration rou-
tines, but the user may choose to start them manually or keep them running after one
integration and shut them down later, e.g. at the end of the program, which can be slightly
more efficient. The latter mode is referred to as ‘Spinning Cores’ and must be employed
with certain care, for running workers will not ‘see’ subsequent changes in the main pro-
gram’s data (e.g. global variables, common blocks) or code (e.g. via dlsym) unless special
arrangements are made (e.g. shared memory).

The spinning cores are controlled through the ‘spin’ argument of the Cuba integration
routines (Sect. 7.1.1):

• A value of -1 or %VAL(0) (in Fortran) or NULL (in C/C++) tells the integrator to
start and shut down the workers autonomously. This is the usual case. No workers
will still be running after the integrator returns. No special precautions need to
be taken to communicate e.g. global data to the workers. Note that it is expressly
allowed to pass a ‘naive’ -1 (which is an integer, not an integer*8) in Fortran.

• Passing a zero-initialized variable for spin instructs the integrator to start the workers
but keep them running on return and store the ‘spinning cores’ pointer in spin for
future use. The spinning cores must later be terminated explicitly by cubawait, thus
invocation would schematically look like this:

integer*8 spin

spin = 0

call vegas(..., spin, ...)

...

call cubawait(spin)

void *spin = NULL;

Vegas(..., &spin, ...);

...

cubawait(&spin);

• A non-zero spin variable is assumed to contain a valid ‘spinning cores’ pointer either
from a former integration or an explicit invocation of cubafork, as in:

integer*8 spin

call cubafork(spin)

call vegas(..., spin, ...)

...

call cubawait(spin)

void *spin;

cubafork(&spin);

Vegas(..., &spin, ...);

...

cubawait(&spin);

27

8.2.2 Accelerators and Cores

Based on the strategy used to distribute samples, Cuba distinguishes two kinds of workers.

Workers of the first kind are referred to as ‘Accelerators’ even though Cuba does not
actually send anything to a GPU or Accelerator in the system by itself – this can only be
done by the integrand routine. The assumption behind this strategy is that the integrand
evaluation is running on a device so highly parallel that the sampling time is more or
less independent of the number of points, up to the number of threads paccel available in
hardware. Cuba tries to send exactly paccel points to each core – never more, less only for
the last batch. To sample e.g. 2400 points on three accelerators with paccel = 1000, Cuba
sends batches of 1000/1000/400 and not, for example, 800/800/800 or 1200/1200. The
number of accelerators naccel and their value of paccel can be set through the environment
variables

CUBAACCEL=naccel (default: 0)
CUBAACCELMAX=paccel (default: 1000)

or, superseding the environment, an explicit

call cubaaccel(naccel, paccel)

CPU-bound workers are just called ‘Cores’. Their distribution strategy is different
in that all available cores are used and points are distributed evenly. In the example
above, the batches would be 800/800/800 thus. Each core receives at least 10 points, or
else fewer cores are used. If no more than 10 points are requested in total, Cuba uses
no workers at all but lets the master sample those few points. This happens during the
partitioning phase of Divonne, for instance, where only single points are evaluated in the
minimum/maximum search. Conversely, if the division of points by cores does not come
out even, the remaining few points (< ncores) are simply added to the existing batches,
to avoid an extra batch because of rounding. Sampling 2001 points on two cores with
pcores = 1000 will hence give two batches 1001/1000 and not three batches 1000/1000/1.

Although there is typically no hardware limit, a maximum number of points per core,
pcores, can be prescribed for Cores, too. Unless the integrand is known to evaluate equally
fast at all points, a moderate number for pcores (10000, say) may actually increase perfor-
mance because it effectively load-levels the sampling. For, a batch always goes to the next
free core so it doesn’t matter much if one core is tied up with a batch that takes longer.

The number of cores ncores and the value of pcores can be set analogously through the
environment variables

CUBACORES=ncores (default: no. of idle cores)
CUBACORESMAX=pcores (default: 10000)

If CUBACORES is unset, the idle cores on the present system are taken (total cores minus load
average), which means that a program calling a Cuba routine will by default automatically
parallelize on the available cores. Again, the environment can be overruled with an explicit

28

call cubacores(ncores, pcores)

Using the environment has the advantage, though, that changing the number of cores to use
does not require a re-compile, which is particularly useful if one wants to run the program
on several computers (with potentially different numbers of cores) simultaneously, say in
a batch queue.

The integrand function may use the ‘core’ argument (Sect. 7.1.1) to distinguish Accel-
erators (core < 0) and Cores (core > 0). The special value core = 32768 (215) indicates
that the master itself is doing the sampling.

8.2.3 Worker initialization

User subroutines for (de)initialization may be registered with

call cubainit(initfun, initarg) Fortran
call cubaexit(exitfun, exitarg)

cubainit(initfun, initarg); C/C++
cubaexit(exitfun, exitarg);

and will be executed in every process before and after sampling. Passing a null pointer
(%VAL(0) in Fortran, NULL in C/C++) as the first argument unregisters either subroutine.

The init/exit functions are actually called as

call initfun(initarg, core) Fortran
call exitfun(exitarg, core)

initfun(initarg, &core); C/C++
exitfun(exitarg, &core);

where initarg and exitarg are the user arguments given with the registration (arbitrary
in Fortran, void * in C/C++) and core indicates the core the function is being executed
on, with (as before) core < 0 for Accelerators, core > 0 for Cores, and core = 32768 for
the master.

On worker processes, the functions are respectively executed after fork and before wait,
independently of whether the worker actually receives any samples. The master executes
them only when actual sampling is done. For Accelerators, the init and exit functions are
typically used to set up the device for the integrand evaluations, which for many devices
must be done per process, i.e. after the fork.

29

8.2.4 Concurrency issues

By creating a new process image, fork circumvents all memory concurrency, to wit: each
worker modifies only its own copy of the parent’s memory and never overwrites any other’s
data. The programmer should be aware of a few potential problems nevertheless:

• Communicating back results other than the intended output from the integrand to
the main program is not straightforward because, by the same token, a worker cannot
overwrite any common data of the master, it will only modify its own copy.

Data exchange between workers is likewise not directly possible. For example, if one
worker stores an intermediate result in a common block, this will not be seen by the
other workers.

Possible solutions include using shared memory (shmget etc., see App. A) and writing
the output to file (but see next item below).

• fork does not guard against competing use of other common resources. For example,
if the integrand function writes to a file (debug output, say), there is no telling in
which order the lines will end up in the file, or even if they will end up as complete
lines at all. Buffered output should be avoided at the very least; better still, every
worker should write the output to its own file, e.g. with a filename that includes the
process id, as in:

character*32 filename

integer pid

data pid /0/

if(pid .eq. 0) then

pid = getpid()

write(filename,’("output.",I5.5)’) pid

open(unit=4711, file=filename)

endif

• Fortran users are advised to flush (or close) any open files before calling Cuba, i.e.
call flush(unit). The reason is that the child processes inherit all file buffers, and
each of them will write out the buffer content at exit. Cuba preemptively flushes
the system buffers already (fflush(NULL)) but has no control over Fortran’s buffers.

For debugging, or if a malfunction due to concurrency issues is suspected, a program should
be tested in serial mode first, e.g. by setting CUBACORES = 0 (Sect. 8.2.2).

8.2.5 Vectorization

Vectorization means evaluating the integrand function for several points at once. This is
also known as Single Instruction Multiple Data (SIMD) paradigm and is different from

30

ordinary parallelization where independent threads are executed concurrently. It is usually
possible to employ vectorization on top of parallelization.

Vector instructions are commonly available in hardware, e.g. on x86 platforms under
acronyms such as SSE or AVX. Language support varies: Fortran 90’s syntax naturally
embeds vector operations. Many C/C++ compilers offer auto-vectorization options, some
have extensions for vector data types (usually for a limited set of mathematical functions),
and even hardware-specific access to the CPU’s vector instructions. And then there are
vectorized libraries of numerical functions available.

Cuba cannot automatically vectorize the integrand function, of course, but it does pass
(up to) nvec points per integrand call (Sect. 7.1.1). This value need not correspond to the
hardware vector length – computing several points in one call can also make sense e.g. if
the computations have significant intermediate results in common. The actual number of
points passed is indicated through the corresponding nvec argument of the integrand.

A note for disambiguation: The nbatch argument of Vegas is related in purpose but not
identical to nvec. It internally partitions the sampling done by Vegas but has no bearing
on the number of points given to the integrand. On the other hand, it it pointless to choose
nvec > nbatch for Vegas.

9 Tests and Comparisons

Four integration routines may seem three too many, but as the following tests show, all have
their strengths and weaknesses. Fine-tuning the algorithm parameters can also significantly
affect performance.

In the following, the test suite of Genz [14] is used. Rather than testing individual
integrands, Genz proposes the following six families of integrands:

1. Oscillatory: f1(x) = cos(c · x + 2πw1) ,

2. Product peak: f2(x) =
nd∏
i=1

1

(xi − wi)2 + c−2i

,

3. Corner peak: f3(x) =
1

(1 + c · x)nd+1
,

4. Gaussian: f4(x) = exp(−c2(x−w)2) ,

5. C0-continuous: f5(x) = exp(−c · |x−w|) ,

6. Discontinuous: f6(x) =

{
0 for x1 > w1 ∨ x2 > w2 ,

exp(c · x) otherwise.

(3)

Parameters designated by w are non-affective, they vary e.g. the location of peaks, but
should in principle not affect the difficulty of the integral. Parameters designated by c are

31

affective and in a sense “define” the difficulty of the integral, e.g. the width of peaks are
of this kind. The ci are positive and the difficulty increases with ‖c‖1 =

∑nd

i=1 ci.

The testing procedure is thus: Choose uniform random numbers from [0, 1) for the ci
and wi. Renormalize c for a given difficulty. Run the algorithms with the integrands thus
determined. Repeat this procedure 20 times and take the average.

For comparison, Mathematica’s NIntegrate function was included in the test. Unfortu-
nately, when a maximum number of samples is prescribed, NIntegrate invariably uses non-
adaptive methods, by default the Halton–Hammersley–Wozniakowski quasi-Monte Carlo
algorithm. The comparison may thus seem not quite balanced, but this is not entirely true:
Lacking an upper bound on the number of integrand evaluations, NIntegrate’s adaptive
method in some cases ‘locks up’ (spends an inordinate amount of time and samples) and
the user can at most abort a running calculation, but not extract a preliminary result. The
adaptive method could reasonably be used only for some of the integrand families in the
test, and it was felt that such a selection should not be done, as the comparisons should
in the first place give an idea about the average performance of the integration methods,
without any fine-tuning.

Table 1 gives the results of the tests as described above. This comparison chart should
be interpreted with care, however, and serves only as a rough measure of the performance
of the integration methods. Many integrands appearing in actual calculations bear few
or no similarities with the integrand families tested here, and neither have the integration
parameters been tuned to ‘get the most’ out of each method.

The Mathematica code of the test suite is included in the downloadable Cuba package.

10 Summary

The Cuba library offers a choice of four independent routines for multidimensional numer-
ical integration: Vegas, Suave, Divonne, and Cuhre. They work by very different methods,
summarized in the following table:

Routine Basic integration method Algorithm type Variance reduction

Vegas Sobol quasi-random sample Monte Carlo importance sampling
or pseudo-random sample Monte Carlo

Suave Sobol quasi-random sample Monte Carlo globally adaptive subdivision
or pseudo-random sample Monte Carlo

Divonne Korobov quasi-random sample Monte Carlo stratified sampling,
or Sobol quasi-random sample Monte Carlo aided by methods from
or pseudo-random sample Monte Carlo numerical optimization
or cubature rules deterministic

Cuhre cubature rules deterministic globally adaptive subdivision

32

nd = 5
j Vegas Suave Divonne Cuhre NIntegrate
1 162000± 0 127300± 32371 21313± 11039 819± 0 218281± 0
2 11750± 1795 13500± 1539 17353± 3743 56238± 40917 218281± 0
3 16125± 2411 11500± 1000 17208± 2517 1174± 444 218281± 0
4 56975± 11372 20100± 4745 19636± 6159 22577± 31424 218281± 0
5 14600± 3085 15250± 2337 21675± 4697 150423± 0 218281± 0
6 19750± 4999 23850± 2700 39694± 14001 1884± 215 218281± 0

nd = 8
j Vegas Suave Divonne Cuhre NIntegrate
1 153325± 20274 124350± 35467 28463± 31646 3315± 0 212939± 13557
2 12650± 1987 21050± 4594 22030± 3041 91826± 58513 218281± 0
3 24325± 3753 29350± 3588 67104± 16906 18785± 22354 218281± 0
4 38575± 16169 29250± 8873 24849± 5015 62322± 44328 218281± 0
5 15150± 2616 25500± 6444 32885± 5945 151385± 0 218281± 0
6 18875± 2512 40900± 7196 116744± 32533 9724± 9151 218281± 0

nd = 10
j Vegas Suave Divonne Cuhre NIntegrate
1 156050± 21549 129800± 30595 32176± 30424 7815± 0 214596± 16481
2 14175± 2672 24800± 5464 25684± 7582 144056± 25983 218281± 0
3 30275± 6296 51150± 15608 139737± 18505 109150± 58224 218281± 0
4 29475± 10277 34050± 10200 27385± 8498 105763± 49789 218281± 0
5 16150± 2791 31400± 7715 44393± 18654 153695± 0 218281± 0
6 22100± 3085 74900± 32203 136508± 17067 73200± 64621 218281± 0

Test parameters:

• number of dimensions: nd = 5, 8, 10,

• requested relative accuracy: εrel = 10−3,

• maximum number of samples: nmax
s = 150000,

• integrand difficulties:
Integrand family j 1 2 3 4 5 6

‖cj‖1 6.0 18.0 2.2 15.2 16.1 16.4

Table 1: The number of samples used, averaged from 20 randomly chosen integrands from
each integrand family j defined in Eq. (3). Values in the vicinity of nmax

s generally indicate
failure to converge. NIntegrate seems not to be able to stop at around the limit of
MaxPoints -> nmaxs , but always samples considerably more points.

33

All four have a C/C++, Fortran, and Mathematica interface and can integrate vector
integrands. Their invocation is very similar, so it is easy to substitute one method by
another for cross-checking. For further safeguarding, the output is supplemented by a χ2

probability which quantifies the reliability of the error estimate.

The source code is available from http://feynarts.de/cuba and compiles with gcc,
the GNU C compiler. The C functions can be called from Fortran directly, so there is no
need for adapter code. Similarly, linking Fortran code with the library is straightforward
and requires no extra tools.

The routines in the Cuba library have all been carefully tested, but it would of course be
folly to believe they are completely error-free. The author welcomes any kind of feedback,
in particular bug and performance reports, at hahn@feynarts.de.

Acknowledgements

I thank A. Hoang for involving me in a discussion out of which the concept of the Math-
ematica interface was born and T. Fritzsche, M. Rauch, and A.M. de la Ossa for testing.
B. Chokoufe implemented check-pointing (state file) for Suave, Divonne, and Cuhre.

A Shared Memory in Fortran

IPC shared memory is not natively available in Fortran, but it is not difficult to make it
available using two small C functions shmalloc and shmfree:

#include <sys/shm.h>

#include <assert.h>

typedef long long int memindex;

typedef struct { void *addr; int id; } shminfo;

void shmalloc_(shminfo *base, memindex *i, const int *n, const int *size) {

base->id = shmget(IPC_PRIVATE, *size*(*n + 1) - 1, IPC_CREAT | 0600);

assert(base->id != -1);

base->addr = shmat(base->id, NULL, 0);

assert(base->addr != (void *)-1);

*i = ((char *)(base->addr + *size - 1) - (char *)base)/(long)*size;

}

void shmfree_(shminfo *base) {

shmdt(base->addr);

shmctl(base->id, IPC_RMID, NULL);

}

34

The function shmalloc allocates (suitably aligned) n elements of size size and returns a
mock index into base, through which the memory is addressed in Fortran. The array base

must be of the desired type and large enough to store the struct shminfo, e.g. two doubles
wide. Be careful to invoke shmfree after use, for the memory will not automatically be
freed upon exit but stay allocated until the next reboot (or explicit removal with ipcs).

The following test program demonstrates how to use shmalloc and shmfree:

program test

implicit none

integer*8 i

double precision base(2)

call shmalloc(base, i, 100, 8) ! allocate 100 doubles

base(i) = 1 ! now use the memory

...

base(i+99) = 100

call shmfree(base) ! don’t forget to free it

end

References

[1] R. Piessens, E. de Doncker, C. Überhuber, D. Kahaner, Quadpack – a subroutine
package for automatic integration, Springer-Verlag, 1983.

[2] G.P. Lepage, J. Comp. Phys. 27 (1978) 192.

[3] G.P. Lepage, Report CLNS-80/447, Cornell Univ., Ithaca, N.Y., 1980.

[4] W.H. Press, G.R. Farrar, Comp. in Phys. 4 (1990) 190.

[5] J.H. Friedman, M.H. Wright, ACM Trans. Math. Software 7 (1981) 76;
J.H. Friedman, M.H. Wright, SLAC Report CGTM-193-REV, CGTM-193, 1981.

[6] J. Berntsen, T. Espelid, A. Genz, ACM Trans. Math. Software 17 (1991) 437;
J. Berntsen, T. Espelid, A. Genz, ACM Trans. Math. Software 17 (1991) 452;
TOMS algorithm 698.

[7] P. Bratley, B.L. Fox, ACM Trans. Math. Software 14 (1988) 88;
TOMS algorithm 659.

[8] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM,
1992.

35

[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in
Fortran, 2nd edition, Cambridge University Press, 1992.

[10] N.M. Korobov, Number theoretic methods in approximate analysis (in Russian), Fiz-
matgiz, Moscow, 1963.

A comprehensive English reference on the topic of good lattice points (of which the
Korobov points are a special case) is H.L. Keng, W. Yuan, Applications of number
theory to numerical analysis, Springer-Verlag, 1981.

[11] M. Matsumoto, T. Nishimura, ACM Trans. Modeling Comp. Simulation 8 (1998) 3.
See also http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html.

[12] M. Lüscher, Comp. Phys. Commun. 79 (1994) 100;
F. James, Comp. Phys. Commun. 79 (1994) 111.

[13] A. Genz, A. Malik, SIAM J. Numer. Anal. 20 (1983) 580.

[14] A. Genz, A package for testing multiple integration subroutines, in: P. Keast, G. Fair-
weather (eds.), Numerical Integration, Kluwer, Dordrecht, 1986.

36

