1 SecDec User Manual

Version 3.0, last manual update February 22, 2016

1.1 Imnstallation

The program can be downloaded from http://secdec.hepforge.org. Unpack-
ing the tar archive via tar xzvf SecDec-3.0.tar.gz will create a directory called
SecDec-3.0. Running make in the SecDec-3.0 directory will call the install
script, which will check whether Mathematica and perl are present and com-
pile the numerical integration libraries CUBA [1, 2, 3], BASES [4] and CQUAD [5],
along with the quasi-random sequence generator SOBOL, which come with the
package. Prerequisites are Mathematica [6] version 7 or above, perl (installed by
default on most Unix/Linux systems), a C++03 compliant compiler, and a For-
tran compiler if the Fortran part is used. Contour deformation is not available
in Fortran.

Please note that the current stable release of Mathematica (v10.0.2) has a
bug which causes non-interactive sessions, such as those used by SECDEC , to
hang if parallel kernels are launched. Therefore we have decided (starting from
version 3.0.6) to disable the parallelization for the algebraic part of the program
by setting nbmathsubkrnls=0 as the default. If the user would like to speed
up the algebraic part by specifying a nonzero value for nbmathsubkrnls , we
recommend using a different version of Mathematica.

The program Normaliz 2.10.1 [7, 8] is needed for the geometric decomposi-
tion strategies G1 and G2. Precompiled executables for different systems can be
downloaded from http://www.math.uos.de/normaliz/Normaliz2.10.1/ and
have to be moved into the src/ subdirectory of SECDEC-3.0.

The user can check whether the installation was successful with the command
make check, which will run a few test examples and compare the results to the
pre-calculated result coming with the program package.

1.2 Conventions for the integral definition

The loop integrals calculated by SECDEC are defined as

L 1
o = /Hd% — (1)
=1 -H1 Py ({k} {p}, m3)
J:
D del 2 2 2,
A%k = ok P;({k}, {p},mj) = ¢; —mj +id,

i.e. we do not include a factor ir? for each loop in the numerical result. Intro-
ducing Feynman parameters in Eq. (1) leads to

G = &F(NV—LDQ)

H;V:1 L'(v;)

7 YN —(L+1)D/2

N N
></ dej xj”,j—l 5(1_25”1)—]:1\'”%17/2 (2)
j=1

d =1

where
L
F(@) = det(M)| Y QM Qi—J—i6 (3)
j,l=1
N
UZ) = det(M), N, = Zyj , (4)
j=1

In the expressions above, M is an L x L matrix containing Feynman param-
eters, () is an L-dimensional vector, where each entry is a linear combination
of external momenta and Feynman parameters, and J is a scalar expression
containing kinematic invariants and Feynman parameters, for more details we
refer to Ref. [9].

The numerical result given by SECDEC will be the one for the integral as de-

fined in Eq. (1). This implies that the prefactor H(N;)FA;U)F(NV —LD/2) coming
j=1+Wj

from the Feynman parametrisation by default will be included in our numerical
result. However, the user can define a different prefactor to be factored out from
the numerical result in the input file math.m.

1.3 Usage

In the following we refer to three directory structures:

e input directory: the directory in which the user’s input files (parameter
file, math file and kinematics file) reside,

e output directory: the directory into which SECDEC-3.0 will write out-
put files

e SecDec directory: the location of SECDEC-3.0.

SECDEC has various setups: one for standard loop integrals, termed ‘loop
setup’ in the following, and one for general parametric functions, termed ‘gen-
eral setup’, as reflected by the two directories loop and general. While the
parametric functions treated in the general folder are not accessible to contour
deformation, the latter is still available for integrals which go beyond standard
loop integrals. Such non-standard integrals can be defined by the user, and

therefore this setup is referred to as ‘user-defined setup’, which is an option
within the loop directory.

The program is called by invoking the script secdec, located in the main
SECDEC directory. We recommended to add the path to the secdec script
to the user’s default search paths, so that it can be called from anywhere on
the system. In the following, we assume that secdec was added to the search
path, so that it can be called without always specifying the path to the script
explicitly.

1.3.1 Usage in the loop setup
1.3.2 Basic usage

e Create templates for the input files with the command
secdec -prep
This command generates the files param. input, kinem. input and math.m.

e Input the graph name and desired order in € (epsord) into param. input,
define the loop integral in math.m and specify one or more kinematic points
in kinem. input. Please note that the order of the values for the kinematic
invariants given in kinem.input must match the order of the invariants
given in math.m, i.e. the entries of the lists KinematicInvariants, Masses
(masses always listed last).

e To run SECDEC : simply issue the command
secdec
If the input files have been renamed, the command is
secdec -p <myparam.input> -m <mymath.m> -k <mykinem.input>.

e Switch to the output directory which has been created. It carries the
graph name specified in param.input. The results are in the results
folder, containing a file graph_pointname.res for each point specified in
the kinematics file, and plotfile<i>.gpdat files for each e-order i, where
the results for all kinematic points have been appended.

1.3.3 Intermediate usage

The different stages of SECDEC can also be run separately. Creating and editing
the input files as before, one can run the algebraic part only by
secdec —-algebraic
This allows for example to get a first idea of the pole structure generated during
the decomposition. One can also examine the F and U functions in the folder
named FU in the output directory. It is also the way to proceed if the subsequent
numerical evaluation should not be done locally, but on a cluster.

The numerical part is run by the command
secdec -numerics
The results are collected by
secdec -collect.

Options:

e to add a few more kinematic points, for example in the threshold region,
one can edit the kinem. input file. The user should delete the old (already
calculated) points from the kinem. input file and add the new points with
new point names. It is also possible to edit the kinematics.input file in
the output directory and run secdec -numeric from there.

e One can re-run the numerics in cluster mode by uploading the output
directory to the head node and running the submission scripts in the
cluster folder. (Note: please examine the submission scripts before sub-
mitting them to your cluster, they may need to be adapted to the partic-
ular cluster setup).

Expert usage

There are various possibilities for the user to control the different stages of the
calculation, shown in Table 1. The optional detailed or basic commands must
be run in the order presented. If the user specifies an exe flag and calls secdec
without a basic or detailed command then all tasks with a lower exe flag will
also be executed. If the user calls secdec with a basic or detailed command,
for example secdec -subexpand then only that task will be performed. Specif-
ically, in this example makeparams, makeFU, decompose and preparesubexpand
would not be executed.

1.3.4 Evaluation of selected pole coefficients

In version 3, the user has the possibility to calculate certain pole structures/epsilon
orders individually. The pole structures are labelled by a string of the type
ilj hk, where [stands for linear poles, h stands for higher than linear poles,
while the number i of “usual” logarithmic poles is put at the beginning of the
string. For example, the pole structure 211h0 means “2 logarithmic poles, 1 lin-
ear pole, 0 higher than linear poles. By “linear pole” we mean that a factorized
Feynman parameter has an exponent of the form z=27%¢. For more details we
refer to Ref. [10].

Each pole structure contains several orders in the e-expansion, ranging from
the maximal pole of the given pole structure to the expansion order in € speci-
fied by the user. The coefficients of a certain order in € are stored in subfolders
of the pole structure folders, which are labelled epstothe-2, epstothe-1, etc.
The user can select different pole structures as well as individual e orders by
commands of the form
secdec [-<subexpand/preparenumerics/numerics>] [-polestructs=
<polestructs>] [-epsords=<epsords>]

The behaviour of the program is the following:

e if polestructs is not specified, loop over all (contributing) pole structures

exe- | command command | functionality
flag | (detailed) (basic)
e extracts parameters from the graph
makeparams definition given in math.m
makeFU e constructs the graph polynomials F and U
>0 . ..
- decompose e performs the iterated sector decomposition
preparesubexpand e writes the Mathematica files which are
needed to run the subtractions and
algebraic e-expansions for each pole structure
e performs the subtractions and e-expansions
for each pole structure and writes the
subexpand functions f*.cc (resp. £*.m) to be evaluated
>1 numerically for each pole structure
preparenumerics e writes the files needed to perform the
numerical integration of each pole structure
(including the scripts for job submission
to a cluster)
> 2 | numerics numerics e performs the compilation and runs
the executables
3 collectresults collect e performs the collection of the results

Table 1: The different execution stages of SECDEC and the possibilities for the
user to steer them. The optional detailed or basic commands can be issued
with, e.g. secdec -algebraic, and must be run in the order presented.

e if epsords is not specified, loop over all € orders

e if polestructs is specified either as a list
secdec [-<subexpand/preparenumerics/numerics>] -polestructs=
210h0, 110h0, or separately

secdec [-<subexpand/preparenumerics/numerics>] -polestructs=210h0

-polestructs=110h0
loop over just these pole structures (for all € orders)

e if epsords is specified either as a list or separately, loop over just these €
orders (for all contributing pole structures)

e if both polestructs and epsords is specified, loop over just these € orders
and pole structures.

If the togetherflag is set to one, all pole structures have been combined into
one folder called together. In this case, the individual € orders can still be
calculated separately with the same logic as above, except that there is only
one pole structure called “together”. For example, in order to perform the
numerical evaluation only for the e~ part of all orders in € contained in the
together folder, the command would be
secdec —numerics -epsords=-4.

1.3.5 Description of the input files

The description below is for loop diagrams; the input files in the subdirectory
general to compute more general parametric functions did not change between
versions 2 and 3, and therefore we refer to descriptions in Refs. [11, 12] in the
general branch.

e param.input: (text file)
The mandatory parameters the user needs to specify are

— graphname: a name for the graph to be calculated

— epsord: the desired expansion order in e.

All other values take defaults if not specified. A detailed description of all
options is given is Section 1.3.6.

e math.m: (Mathematica syntax)
This file contains the definition of the graph to be calculated.
momlist: list of loop momenta
proplist: list of propagators, either in momentum flow representation or
as a list containing the propagator mass and the labels of the vertices the
propagator is connecting. Please note that the label of the vertex which
contains the external momentum p; should be 7. For vertices involving
only internal lines, the labelling is arbitrary. For more details we refer to
Ref. [11].

numerator: there are two possiblities to define a numerator:

(a) give a list of loop momenta contracted with either external momenta
or loop momenta. Each Lorentz contraction should be denoted by “*”,
while each contracted factor should form an element of a list. E.g., for
2k - py ko - p2, the syntax is numerator=2,k1*pl,k2*p2.

(b) define an additional propagator and specify a negative index in powerlist
(see below).

The default is numerator=1 (scalar integral).

powerlist: list of porpagator powers, also called “indices” in the litera-
ture. Can also take zero or negative integer values.

Dim: the dimension of the loop momenta. The default is Dim=4 — 2e.
prefactor: the prefactor specified here will be factored out of the numer-
ical result. This means that the numerical result will be divided by the

prefactor given here. Please note that a factor H(N;)FN(V)F(N,, — LD/2),
j=1+\Vj

which comes from the Feynman parametrisation, will be included by de-
fault in the numerical result, according to the integral definition in Eq. (1).
ExternalMomenta: list of external momenta occurring in the graph def-
inition (only necessary if the graph definition contains the momenta ex-
plicitly, i.e. in momentum flow representation). If the length of this list is
different from the number of external legs, give also the number of exter-
nal legs as externallegs=....

KinematicInvariants: list of symbols for kinematic invariants (formed
from Lorentz vectors) occurring in the diagram. The symbols can be cho-
sen by the user.

Masses: list of symbols for the masses. In the case of massive on-shell
lines, i.e. p?> = m?, where m is a propagator mass as well as the mass
of an external leg, the way to proceed is to define SP[p,p]— m2 in
ScalarProductRules, such that no extra symbol needs to be specified
for p?.

Note that the list of masses should always contain the propagator masses
used in proplist.

ScalarProductRules: list of replacement rules for the kinematic invari-
ants formed by external momenta.

splitlist: allows to specify those Feynman parameters which may have
an endpoint singularity at z; = 1, such that the integral will be split at
1/2 and the singularity at one will be remapped to a singularity at zero.

kinem.input: (text file)

Should contain numerical values for the kinematic invariants, in the same
order as the symbols for the kinematic invariants given in the fields
KinematicInvariants and Masses in the Mathematica input file (called
math.m here). The numerical values for the masses should always be listed
after the invariants formed from Lorentz vectors.

If kinemloop.input contains several lines, each line will be evaluated as a
new kinematic point. In order to be able to distinguish the runs/results for

the different kinematic points, each array of numerical values should have a
label prepended which defines the “pointname”. Example: if mathloop.m
contains KinematicInvariants = s,t,plsq and Masses=mlsq, the cor-
responding kinematics input file where m1sq takes the value 1 for point p1
and 5 for point p2 should look like (the values for s,t,plsq are e.g. 500,
-88, 100)

pl 500 -88 100 1

p2 500 -88 100 5

1.3.6 Detailed description of all options in param.input

It should be emphasized again that the only mandatory fields are graph and
epsord, all other parameters take default values if not specified, which are given
in brackets after the keyword in the description below.

graph The name of the diagram or parametric function to be computed is
specified here. The graph name can contain underscores and numbers,
but should not contain commas.

epsord The order to which the Laurent series in € should be expanded, starting
from e~™e®role The value of epsord=0 will calculate the pole coefficients
and the finite part. Note that epsord can be negative if only the pole
coefficients up to a certain order should be computed.

outputdir () specifies the name of the directory where the produced files will
be written to, the absolute path should be given. If left empty, a subdi-
rectory of the input directory with the name of the graph will be created.

contourdef (False) The contour deformation can be switched on or off by
choosing contourdef=True/False (lower case letters are also possible). For
multi-scale problems, respectively diagrams with non-Euclidean kinemat-
ics, set contourdef="True.

lambda (1.0) A is a parameter controlling the contour deformation. The pro-
gram takes the A\ value given by the user in the input file as a starting
point. The program then performs checks and optimizations to find an
‘optimal’ value for A. The user should pick an initial value which is rather
large, as the program will decrease A appropriately, while it cannot in-
crease A. Values of A between 1 and 3 are usually a good choice.

strategy (X) Choice of the decomposition strategy. The default is X, which
is the same strategy as in previous versions, which is usually the most
efficient one, but is not guaranteed to stop. If the decomposition does not
seem to stop, strategies G1 or G2 should be chosen, which are based on a
geometrical algorithm as described in the SECDEC-3.0 paper, and which
cannot run into an infinite recursion. Within strategy G2, no primary
sector decomposition is done. Therefore it is obviously not possible to
specify only selected primary sectors to be calculated when using this
strategy.

exeflag (3) The ezeflag can be used to execute the program only up to a certain
stage. There are three basic stages: i) the algebraic part, ii) the numerical
part and iii) collecting the results. The algebraic part can be further split
into a part doing only the iterated sector decomposition (e.g. to get an
idea about the pole structure), and a part performing the subtractions
and the expansion in epsilon. The values of the exeflag correspond to the
following stages:

e 0: The parameters like the number of loops, propagators etc are
extracted from the user’s Mathematica input file; the graph polyno-
mials F and U (and the numerator in the case of tensor integrals)
are constructed; the iterated sector decomposition is done; the scripts
subandexpand*.m in the graph subdirectory for the subtractions and
epsilon expansions are created, but not run.

e 1: The subtractions and expansions in € are performed and the re-
sulting functions for the pole coefficients are written to C*+ or Math-
ematica files; all the other files needed for the numerical integration
are created as well.

e 2: Compilation and numerical integrations are performed.

e 3: The results are collected.

All exeflags imply that the steps corresponding to lower exeflags will au-
tomatically be performed as well. However, there is also the possibility
to skip previous steps by calling SECDEC with a basic or detailed com-
mand. For example, to run only the the numerical part the call is secdec
-numerics. This command will not restart the whole algebraic part, but
just compile the functions and run the executables. An error will be
thrown if the functions have not been produced beforehand. Table 1 gives
a schematic overview of the various options to control the program flow.

Please note that if the clusterflag is switched on, it is assumed that the
user will produce the functions locally and then compile and run them on a
cluster. Therefore, in cluster mode, the program will perform the algebraic
part and produce the submission scripts, and then stop, independent of
the value of the exeflag, as the user should control the job submission
(secdec -numerics) and the collection of the results (secdec -collect)
in cluster mode.

Advanced usage

togetherflag (0) This flag defines whether to integrate subsets! of functions
contributing to a certain e-order separately (togetherflag=0), or to sum
all functions for a certain order in € prior to integration (togetherflag=1).

IThe subsets are naturally formed by the fact that functions contributing to a certain
e-order can descend from different pole structures.

The latter will avoid large cancellations between results for functions de-
scending from different pole structures and thus give a more realistic error.
However, togetherflag=1 is not recommended for cases where the individ-
ual functions are already very complicated.

grouping (2000) It can be beneficial to first sum a few functions before inte-
grating them. Choosing a value for the grouping which is nonzero defines
an upper limit (in kilobytes) for a file containing the sum of a number
of functions. The number of kbytes is set by grouping=#kbytes. Setting
grouping=0, all functions f*.cc resp. £*x.m are integrated separately. In
practice, grouping=0 has proven to lead to faster convergence and more
accurate results in most cases. However, for integrals where large cancel-
lations among the different functions occur, the grouping value should be
chosen # 0. The log files *results*.log in the results directory contain
the results from the individual sub-sector integrations. These files are use-
ful to spot cancellations between the individual functions and to adjust
the settings accordingly.

IBPflag (0) Set IBPflag=0 if the integration by parts option should not be
used and IBPflag=1 if it should be used. IBPflag=2 is designed to use
IBP relations when it is deemed efficient to do so. Using the integra-
tions by parts method takes more time in the subtraction and expansion
step and generally results in more functions for numerical integration. Its
usefulness is mainly for cases where (spurious) linear poles of the type
227 are found in the decomposition, as it reduces the power of z in the
denominator.

infinitesectors () This field should be empty if the default strategy X or the
strategies G1 or G2 are applied. It offers the possibility to use a different
‘heuristic’ strategy [13] for certain primary sectors if they seem to suf-
fer from infinite recursion. The primary sectors given in the list (comma
separated) will then be decomposed with this heuristic strategy. It can
avoid infinite recursion in cases where strategy X fails, but is not guaran-
teed to stop. For example, infinitesectors=2,3 results in the application
of this heuristic strategy to primary sectors 2 and 3. In examples with
massive propagators, one should put the labels belonging to the massive
propagators into the list.

primarysectors () This field allows to calculate selected primary sectors only.
If left blank, primarysectors defaults to all, i.e. primarysectors=1,...,N
will be assumed, where N is the number of propagators. This option is
useful if a diagram has symmetries such that some primary sectors yield
the same result. It cannot be used in combination with strategy G2. See
Section 1.3.7 for the special usage in combination with the user-defined
setup.

multiplicities () Specify the multiplicities of the primary sectors listed above.
List the multiplicities in same order as the corresponding sectors above.

10

If left blank, a default multiplicity of 1 is set for each primary sector. See
Section 1.3.7 for the special usage in combination with the user-defined
setup.

rescale (0) If there are large differences in magnitude in the kinematic invari-
ants occurring in a diagram, it can be beneficial to rescale all invariants by
the largest one in order to reach faster convergence during the numerical
integration. The rescaling can be switched on with rescale=1 (default is
rescale=0). Please note: If switched on, it is not possible to set explicit
values (numbers) for any non-zero invariant in the ScalarProductRules=
conditions in the Mathematica file math.m.

nbmathsubkrnls (0) Maximal number of Mathematica subkernels to be used
by Mathematica. The iterated decomposition is not parallelized by de-
fault; setting it to a nonzero number switches on the parallelization using
the specified number of subkernels.

smalldefs (0) smalldefs=1 minimizes the deformation of the contour. It can
be useful for example in the presence of oscillatory integrands.

largedefs (0) If the integrand is expected to have (integrable) endpoint singu-
larities at x; = 0 or 1, largedefs=1, can help to have a sufficiently large
deformation close to the endpoints. The default is largedefs=0.
Note that setting both flags largedefs and smalldefs to zero is perfectly pos-
sible, as the flags operate on different parts of the deformation internally.
For more details we refer to Ref. [11].

optlamevals (4000) The number of pre-samples to determine the optimal con-
tour deformation parameter A can be chosen by assigning a number to
optlamevals.

Parameters related to the numerical integration and exter-
nal libraries

We restrict ourselves to the settings common to all integrators in the description
below. For more details about the CUBA parameters, the user is referred to the
CuBA documentation, Refs. [1, 3].

compiler (gcc) Choice of the C-compiler.

CCargs (-O) Compiler options for the C-compiler to compile the numerical
integration files.

sobolpath () The path to sobol can be specified here, if different from the
default [path_to_secdec]/src/sobol. The sobol quasi-random number
generator is only used if contourdef=True.

11

cquadpath () The path to cquad can be specified here, if different from the
default [path_to_secdec]/src/cquad. Note that the program will use
this integrator automatically if an integral or a pole contribution is found
to depend on only 1 Feynman parameter, irrespective of what has been
chosen as integrator below.

integrator (3) The program for the numerical integration can be chosen here.
Vegas (integrator=1), Suave (integrator==2), Divonne (integrator=3) and
Cubhre (integrator=4) are part of the CUBA library. To choose a numerical
integrator included in Mathematica, integrator=>5 can be chosen.

cubapath () The path to the CUBA library can be specified here, if different
from the default [path_to_secdec]/src/Cuba-4.1.

cubacores (1/0) The maximal number of cores Cuba is allowed to use. In
cluster mode, the default is 1, in single machine mode the default is zero,
which means that Cuba will use all available idle cores.

NIntegrateOptions (AccuracyGoal->3) Options for the Mathematica NIn-

tegrate command, if integrator=>5 is chosen. Example:
NlIntegrateOptions=AccuracyGoal — 2,WorkingPrecision—12,
Method— “AdaptiveMonteCarlo”
Please note that when using NIntegrate, the derired accuracy must be
specified using this command (epsrel and epsabs (see below) just as the
other CUBA-specific options have no effect) and it is not possible to obtain
an error estimate.

maxeval (10000000) The maximal number of evaluations to be used by the
numerical integrator. For this fields and the fields below, a value can
be specified for each order in €, separated by commas and starting with
the leading pole. If only one value is given, it will be used for all pole
coefficients. If the list is shorter than the number of orders in €, the last
value of the list will be repeated as often as necessary.

mineval (0) The number of evaluations which should at least be done before
the numerical integrator returns a result.

epsrel (1.e-2) The desired relative accuracy for the numerical evaluation.
Please note that each order in € can be evaluated with a different value for
epsrel (and epsabs), by specifying an individual value for each order in
€, separated by commas and starting with the leading pole, as explained
above.

epsabs (1.e-6) The desired absolute accuracy for the numerical evaluation.
These values are particularly important when either the real or the imag-
inary part of an integral is close to zero.

cubaflags (2) Sets the CUBA verbosity flags. The default is 2, which means
that the CUBA input parameters and other useful information, e.g. about

12

numerical convergence, are written to the log file of the numerical integra-
tion.

seed (0) The seed used to generate random numbers for the numerical integra-
tion with Cuba. The default is seed=0: Cuba will use the Sobol (quasi-)
random number generator

Parameters related to the cluster mode

clusterflag (0) Determines how jobs are submitted. Setting clusterflag=0 (de-
fault) the jobs will run on a single machine, with clusterflag=1 the jobs
will run on a cluster (the corresponding files to submit jobs to a cluster
will be created, see below).

batchsystem (0) Chooses a format for the scripts steering the submission to
a cluster. If batchsystem is set to 0, the setup is for the PBS (portable
batch system). If the flag is set to 1, a user-defined setup is activated.
Currently this is the submission via condor, but it can be easily adapted
to other batch systems by editing the templates in loop/src/numerics/
and loop/perlsrc/makejob.pm.

clusteroptscompile () In cluster mode: command line arguments passed ver-
batim to the job submission script for compilation jobs on a cluster

clusteroptsrun () In cluster mode: command line arguments passed verbatim
to the job submission script for numerical integration jobs on a cluster.

Parameters related to plotting

xplot (1) This option can be used to control the format of the data files where
the results for a range of kinematic points are listed. The variable xplot
denotes a position in the list of invariants. The corresponding invariant
then will be the one which will be plotted on the x-axis. Example: the
invariants are s,t,u,mlsq,m2sq. If a scan over mlsq has been performed,
such that mlsq should be plotted on the x-axis, then xplot=4 would tell
SECDEC to write the values for m1sq into the first column of the *.gpdat
file. The *.gpdat files produced by the program have the form
[invariant chosen by xplot] real result real_error imag result
imag_error timing.
For 3D plots: if xplot is a list of length L, the first L columns of *.gpdat
will correspond to the values of the invariants singled out by the xplot
labels (e.g. xplot=1,2 would produce data files for a 3D plot in s,t).

1.3.7 User-defined setup

This setup allows to define functions in the Mathematica input file
(math_userdefined.m) which are not standard loop integrals. It is invoked
by the option -u when calling secdec. While the param.input file has the

13

same form as for standard loop integrals, the file math [userdefined] .m should
contain the specification of the user-defined functions. Most fields are the same
as in math [loop] .m. However, instead of the definition of a graph, the user can
define a list of functions to be decomposed. The detailed format is specified in
the example 10_userdefined triangle_1L contained in the demos folder of the
program.

primarysectors () and multiplicities () Assoon as the number of functions
#f defined does not correspond to the number of Feynman parameters
#(z[i])+1 appearing in the functions, primarysectors have to be speci-
fied in the input. The first entry in each function carries a number which
labels the function. If there are 5 functions but only 4 Feynman parame-
ters, primarysectors has to be defined as follows:
primarysectors = 1,2,3,4,5
With that, their multiplicities have to be defined as well. Assuming the
second function appeared twice in your calculation, but needs to be cal-
culated only once, the definition of the input reads:
multiplicities = 1,2,1,1,1.
Analogously to the description of the primarysectors option in the Ad-
vanced Usage section, primarysectors can also be specified if only certain
functions should be computed. If the functions labeled with 1, 4 and 5
should be computed, the input would read:
primarysectors = 1,4,5
multiplicities = 1,1,1.
Note: the function labeled 4 can also be second in the list of functions
defined. Hence, for the specification of the primarysectors, the label is
decisive, not the position in the functionlist.

1.3.8 Looping over ranges of parameters

In order to do the numerical integration for a whole set of numerical points,
the multinumerics script which was present in version 2 has become obsolete
in the loop setup. For this purpose, the user only needs to specify numerical
values for the kinematic invariants in kinem.input, where each line defines a
new kinematic point.

1.4 General setup

The structure of the directory general has changed only slightly in version 3
of the program. The command to launch SECDEC is secdec -g similar to the
loop case. Templates for the input files can be generated by secdec -prep -g.
The command secdec -g -p <param.input> -m <math.m> will calculate
the integral using the parameters specified in param.input. To evaluate sev-
eral points one can add the additional option -k <kinem.input> to the above
command.
The commands
secdec —g -p <param.input> -m <math.m> -k <kinem.input> -algebraic

14

and
secdec —-g -p <param.input> -m <math.m> -k <kinem.input> -numerics
will also work in the general setup.

e param.input: (text file)

In this file the user needs to specify a name for the functions to be evalu-
ated, the desired order in €, the parameters for the numerical integration,
and he can specify further options. The format is similar to param. input
in the loop integral case, except that by default all parameters occurring
in the function are specified in the file param. input and no kinem.input
file is needed. However, latter can be used to facilitate parameter scans,
following the syntax of the file multiparamfile of SECDEC version 2.

e math.m: (Mathematica syntax)
Contains the definition of the integrand and further options.

References

1]

[6]
[7]

8]

[10]

T. Hahn, CUBA: A library for multidimensional numerical integration,
Comput. Phys. Commun. 168 (2005) 78-95, [hep-ph/0404043].

S. Agrawal, T. Hahn, and E. Mirabella, FormCalc 7, J.Phys.Conf.Ser.
368 (2012) 012054, [arXiv:1112.0124].

T. Hahn, Concurrent Cuba, arXiv:1408.6373.

S. Kawabata, A New version of the multidimensional integration and
event generation package BASES/SPRING, Comp. Phys. Commun. 88
(1995) 309-326.

P. Gonnet, Increasing the reliability of adaptive quadrature using explicit
interpolants, CoRR abs/1006.3962 (2010).

Mathematica, Copyright by Wolfram Research.

W. Bruns, B. Ichim, and C. Séger, The power of pyramid decomposition
in Normaliz, ArXiv e-prints (June, 2012) [arXiv:1206.1916].

W. Bruns, B. Ichim, T. Rémer, and C. Séger, “Normaliz. Algorithms for
rational cones and affine monoids. Available from
http://www.math.uos.de/normaliz.”

T. Binoth and G. Heinrich, An automatized algorithm to compute infrared
divergent multi-loop integrals, Nucl. Phys. B585 (2000) 741-759,
[hep-ph/0004013].

J. Carter and G. Heinrich, SecDec: A general program for sector
decomposition, Comput.Phys. Commun. 182 (2011) 1566-1581,
[arXiv:1011.5493].

15

[11] S. Borowka, J. Carter, and G. Heinrich, Numerical Fvaluation of
Multi-Loop Integrals for Arbitrary Kinematics with SecDec 2.0,
Comput. Phys. Commun. 184 (2013) 396-408, [arXiv:1204.4152].

[12] S. Borowka, Evaluation of multi-loop multi-scale integrals and
phenomenological two-loop applications, Ph.D. thesis, Max Planck
Institute for Physics/Technical University Munich (2014)
[arXiv:1410.7939].

[13] T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals
by sector decomposition, Nucl. Phys. B680 (2004) 375-388,
[hep-ph/0305234].

16

