pySecDec Documentation

Release 0.1.1

Sophia Borowka Gudrun Heinrich Stephan Jahn Stephen Jones Matthias Kerner Johannes Schlenk Tom Zirke

1 Installation 3
1.1 Installation from PyPI using pip (coming up soon) 3
1.2 Manual Installation 3
1.3 The Geomethod and Normaliz 3
1.4 For Developers 4
2 Overview 5
2.1 pySecDec.algebra 5
2.2 Feynman Parametrization of Loop Integrals 7
2.3 Sector Decomposition 10
2.4 Expansion 13
3 Reference Guide 15
4 References 33
5 Indices and tables 35
Bibliography 37
Python Module Index 39
Index 41
pySecDec is a toolbox for the calculation of dimensionally regulated parameter integrals using the sector decomposition approach [BH00]; see also [Hei08], [BHJ+15].

INSTALLATION

pySecDec should run fine with both, python 2.7 and python 3. It has been tested and developed on MacOS 10.11 (El Capitan) and openSUSE 13.2 (Harlequin). However, it should be platform independent and also work on Windows.

1.1 Installation from PyPI using pip (coming up soon)

Installation is easiest using pip (https://pypi.python.org/pypi/pip). pip automatically installs all dependencies along with the desired package from the Python Package Index (https://pypi.python.org/pypi).

```
$ pip install pySecDec
```


1.2 Manual Installation

Before you manually install pySecDec, make sure that you have recent versions of numpy (http://www.numpy.org/) and sympy (http://www.sympy.org) installed.

To install pySecDec, open a shell in the top level directory (where setup. py is located) and type:

```
$ python setup.py install
```

If you have pip, you should type

```
$ pip install.
```

instead, for the same reasons as mentioned above.

1.3 The Geomethod and Normaliz

Note: If you are not urgently interested in using the geometric decomposition, you can ignore this section for the beginning. The instructions below are not essential for a pySecDec installation. You can still install normaliz after installing pySecDec. All but the geometric decomposition routines work without normaliz.

If you want to use the geometric decomposition module, you need the normaliz [BIR] command line executable. The geometric decomposition module is designed for normaliz version 3.0.0. We recommend to set your \$PATH such that the normaliz executable is found. Alternatively, you can pass the path to the normaliz executable directly to the functions that need it.

1.4 For Developers

pip offers an "editable" installation that can be triggered by:
\$ pip install -e /path/to/repository --user
This command causes python to load pySecDec directly from your local copy of the repository. As a result, no reinstallation is required after making changes in the source code.
pySecDec comes with a self test suite written in the python unittest framework. The most convenient way to run all test is using nose (http://nose.readthedocs.org). If nose is installed, just type:
\$ nosetests
in the source repository to run all tests. In order to check that the examples given in the documentation are working, go to the doc subdirectory and type:

```
$ make doctest
```

Also note the Makefile in the package's root directory that implements a few common development tasks. You can list all available targets with the command

```
$ make help
```


OVERVIEW

pySecDec is consists of several modules that provide functions and classes for specific purposes. In this overview, we present only the most important aspects of selected modules. For detailed instruction of a specific function or class, please refer to the reference guide.

2.1 pySecDec.algebra

The algebra module implements a very basic computer algebra system. Although sympy in principle provides everything we need, it is way too slow for typical applications. That is because sympy is completely written in python without making use of any precompiled functions. pySecDec's algebra module uses the in general faster numpy function wherever possible.

2.1.1 Polynomials

Since sector decomposition is an algorithm that acts on polynomials, we start with the key class Polynomial. As the name suggests, the Polynomial class is a container for multivariate polynomials, i.e. functions of the form:

$$
\sum_{i} C_{i} \prod_{j} x_{j}^{\alpha_{i j}}
$$

A multivariate polynomial is completely determined by its coefficients C_{i}, the exponents $\alpha_{i j}$. The Polynomial class stores these in two arrays:

```
>>> from pySecDec.algebra import Polynomial
>>> poly = Polynomial([[1,0], [0,2]], ['A', 'B'])
>>> poly
    + (A)*x0 + (B)*x1**2
>>> poly.expolist
array([[1, 0],
    [0, 2]])
>>> poly.coeffs
array([A, B], dtype=object)
```

It is also possible to instatiate the Polynomial with by its algebraic representation:

```
>>> poly2 = Polynomial.from_expression('A*x0 + B*x1**2', ['x0','x1'])
>>> poly2
    + (A)*x0 + (B)*x1**2
>>> poly2.expolist
array([[1, 0],
    [0, 2]])
```

```
>>> poly2.coeffs
array([A, B], dtype=object)
```

Note that the second argument of Polynomial.from_expression() defines the variables x_{j}.
The Polynomial class implements basic operations:

```
>>> poly + 1
    +(1) +(B)*x1**2 + (A)*x0
>>> 2 * poly
    +(2*A)*x0 + (2*B)*x1**2
>>> poly + poly
    +(2*B)*x1**2 + (2*A)*x0
>>> poly * poly
    +(B**2)*x1**4 + (2*A*B)*x0*x1**2 + (A**2)*x0**2
>>> poly ** 2
    +(B**2)*x1**4 + (2*A*B)*x0*x1**2 + (A**2)*x0**2
```


2.1.2 General Expressions

In order to perform the pySecDec.subtraction and pySecDec.expansion, we have to introduce more complex algebraic constructs.

General expressions can be entered in a straightforward way:

```
>>> from pySecDec.algebra import Expression
>>> log_of_x = Expression('log(x)', ['x'])
>>> log_of_x
log( + (1)*x)
```

All expressions in the context of this algebra module are based on extending or combining the Polynomials introduced above. In the example above, log_of_x is a LogOfPolynomial, which is a derived class from Polynomial:

```
>>> type(log_of_x)
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> isinstance(log_of_x, Polynomial)
True
>>> log_of_x.expolist
array([[1]])
>>> log_of_x.coeffs
array([1], dtype=object)
```

We have seen an extension the Polynomial class, now let us consider a combination:

```
>>> more_complex_expression = log_of_x * log_of_x
>>> more_complex_expression
(log}(+(1)*x)) * (log( + (1)*x))
```

We just introduced the Product of two LogOfPolynomials:

```
>>> type(more_complex_expression)
<class 'pySecDec.algebra.Product'>
```

As suggested before, the Product combines two Polynomials. They are accessible as the factors:

```
>>> more_complex_expression.factors[0]
log( + (1)*x)
>>> more_complex_expression.factors[1]
log( + (1)*x)
>>> type(more_complex_expression.factors[0])
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> type(more_complex_expression.factors[1])
<class 'pySecDec.algebra.LogOfPolynomial'>
```

Important: When working with this algebra module, it is important to understand that everything is based on the class Polynomial.

To emphasize the importance of the above statement, consider the following code:

```
>>> expression1 = Expression('x*y', ['x', 'y'])
>>> expression2 = Expression('x*y', ['x'])
>>> type(expression1)
<class 'pySecDec.algebra.Polynomial'>
>>> type(expression2)
<class 'pySecDec.algebra.Polynomial'>
>>> expression1
    + (1)*x*y
>>> expression2
    + (y)*x
```

Although expression1 and expression2 are mathematically identical, they are treated differently by the algebra module. In expression1, both, x and y, are considered as variables of the Polynomial. In contrast, y is treated as coefficient in expression2:

```
>>> expression1.expolist
array([[1, 1]])
>>> expression1.coeffs
array([1], dtype=object)
>>> expression2.expolist
array([[1]])
>>> expression2.coeffs
array([y], dtype=object)
```

The second argument of the function Expression controls how the variables are distributed between the coefficients and the variables in the underlying Polynomials. Keep that in mind in order to avoid confusion. One can always check which symbols are considered as variables by asking for the symbols:

```
>>> expression1.symbols
[x, y]
>>> expression2.symbols
[x]
```


2.2 Feynman Parametrization of Loop Integrals

The primary purpose of pySecDec is calculating loop integrals as they arise in fixed order calculations in quantum field theories. In our approach, the first step is converting the loop integral from the momentum representation to the Feynman parameter representation.

The module pySecDec.loop_integral implements exactly that conversion. The most basic use is to calculate the first U and the second F Symanzik polynomial from the propagators of a loop integral.

2.2.1 One Loop Bubble

To calculate U and F of the one loop bubble, type the following commands:

```
>>> from pySecDec.loop_integral import LoopIntegralFromPropagators
>>> propagators = ['k**2', '(k - p)***2']
>>> loop_momenta = ['k']
>>> one_loop_bubble = LoopIntegralFromPropagators(propagators, loop_momenta)
>>> one_loop_bubble.U
    + (1)*x0 + (1)*x1
>>> one_loop_bubble.F
    + (-p**2)*x0*x1
```

The example above among other useful features is also stated in the full documenation of LoopIntegralFromPropagators() in the reference guide.

2.2.2 Two Loop Planar Box with Numerator

Consider the propagators of the two loop planar box:

```
>>> propagators = ['k1**2','(k1+p2)**2',
... '(k1-p1)**2','(k1-k2)**2',
... '(k2+p2)**2','(k2-p1)**2',
\cdots. '(k2+p2+p3)**2']
>>> loop_momenta = ['k1','k2']
```

We could now instantiate the LoopIntegral just like before. However, let us consider an additional numerator:

```
>> numerator = 'k1(mu)*k1(mu) + 2*k1(mu)*p3(mu) + p3(mu)*p3(mu)' # (k1 + p3) ** 2
```

In order to unambiguously define the loop integral, we must state which symbols denote the Lorentz_indices (just mu in this case here) and the external_momenta:

```
>>> external_momenta = ['p1','p2','p3','p4']
>>> Lorentz_indices=['mu']
```

With that, we can Feynman parametrize the two loop box with a numerator:

```
>>> box = LoopIntegralFromPropagators(propagators, loop_momenta, external_momenta,
... numerator=numerator, Lorentz_indices=Lorentz_
\hookrightarrowindices)
>>> box.U
    +(1)*x3*x6 + (1)*x3*x5 + (1)*x3*x4 + (1)*x2*x6 + (1)*x2*x5 + (1)*x2*x4 + (1)*x2*x34
    ->+(1)*x1*x6 + (1)*x1*x5 + (1)*x1*x4 + (1)*x1*x3 + (1)*x0*x6 + (1)*x0*x5 + (1)*x0*x44
    \hookrightarrow+ (1)*x0*x3
>>> box.F
    +(-p1**2 - 2*p1*p2 - 2*p1*p3 - p 2**2 - 2*p2*p3 - p3**2)*x 3*x5*x6 + (-
    \leftrightarrowsp3**2)*x3*x4*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x3*x4*x5 + (-p1**2 - 2*p1*p2 - 2*p1*p3)
->- p2**2 - 2*p2*p3 - p3**2)*x2*x5*x6 + (-p3**2)*x2*x4*x6 + (-p1**2 - 2*p1*p2 --
\leftrightarrowsp2**2)*x2*x4*x5 + (-p1**2 - 2*p1*p2 - 2*p1*p3 - p2**2 - 2*p2*p3 - p 3**2)*x2*x 3*x6 +
\hookrightarrow(-p1**2 - 2*p1*p2 - p 2**2)*x 2*x 3*x4 + (-p1**2 - 2*p1*p2 - 2*p1*p3 - p 2**2 - 2*p 2*p3,
->- p3**2)*x1*x5*x6 + (-p3**2)*x1*x4*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x1*x4*x5 + (-
\mapstop3**2)*x1*x3*x6 + (-p1**2 - 2*p1*p2 - p2**2)*x1*x3*x5 + (-p1**2 - 2*p1*p2 --
4p2**2)*x1*x2**6 + (-p1**2 - 2*p1*p2 - p 2**2)**x1*x2*x5 + (-p1**2 - 2*p1*p2 -
```



```
\leftrightarrows 2 2**2)*x0*x4*x5 + (-p2**2 - 2*p2*p3 - p 3**2)*x0*x 3*x6 + (-p1**2)*x0*x * **x5 + (-
\hookrightarrowp2**2)*x0*x 3*x4 + (-p1**2)*x0*x2*x6 + (-p1**2)*x0*x 2*x5 + (-p1**2)*x0*x2*x4 + (-
\leftrightarrowsp1**2)*x0*x2*x3 + (-p2**2)*x0*x1*x6 + (-p2**2)*x0*x1*x5 + (-p 2**2)*x0*x 1** 4 + (-
\hookrightarrowp2**2)*x0*x * *x 3
```

```
>>> box.numerator
    +(-2*eps*p3(mu)**2 - 2*p3(mu)**2)*U**2 + (-eps + 2)*x6*F + (-eps + 2)*x5*F + (-eps 
    \hookrightarrow+2)*x4*F+(-eps + 2)*x 3*F + (4*eps*p2(mu)*p3(mu) + 4*eps*p3(mu)**2 + +
\hookrightarrow4*p2(mu)*p3(mu) + 4*p3(mu)**2)*x3*x6*U + (-4*eps*p1 (mu)*p3(mu) - -
\hookrightarrow4*p1(mu)*p3(mu))*x 3*x5*U + (4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x 3*x4*U + (-
\hookrightarrow 2*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) - 2*eps*p3(mu)**2 - 2*p2(mu)**2 - - 
\hookrightarrow4*p2(mu)*p3(mu) - 2*p3(mu)**2)*x 3**2*x6**2 + (4*eps*p1 (mu)*p2(mu) +
\hookrightarrow*eps*p1(mu)*p3(mu) + 4*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x 3**2*x5*x6 + (-
\hookrightarrow2*eps*p1(mu)**2 - 2*p1(mu)**2)*x 3**2*x5**2 + (-4*eps*p2(mu)**2 --
\hookrightarrow4*eps*p2(mu)*p3(mu) - 4*p2(mu)**2 - 4*p2(mu)*p3(mu))*x *** 2*x4*x6 + - 
\hookrightarrow(4*eps*p1 (mu)*p2(mu) + 4*p1 (mu)*p2(mu))*x 3**2*x4*x5 + (-2*eps*p2(mu)**2 --
\hookrightarrow2*p2(mu)**2)*x 3**2*x4**2 + (-4*eps*p1(mu)*p3(mu) - 4*p1(mu)*p3(mu))*x2*x6*U + (-
\hookrightarrow*eps*p1 (mu)*p3(mu) - 4*p1 (mu)*p3(mu))*x2*x5*U + (-4*eps*p1 (mu)*p3(mu) - -
4*p1(mu)*p3(mu))*x2*x4*U + (-4*eps*p1(mu)*p3(mu) - 4*p1(mu)*p3(mu))*x 2*x 3*U + + *
\hookrightarrow(4*eps*p1(mu)*p2(mu) + 4*eps*p1(mu)*p3(mu) + 4*p1(mu)*p2(mu) + +
\hookrightarrow*p1(mu)*p3(mu))*x2*x 3*x6**2 + (-4*eps*p1 (mu)**2 + 4*eps*p1 (mu)*p2(mu) + + 
```



```
\hookrightarrow+(-4*eps*p1(mu)**2 - 4*p1 (mu)**2)*x2*x 3*x5**2 + (8*eps*p1 (mu)*p2(mu) + +
4*eps*p1(mu)*p3(mu) + 8*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x 2*x 3*x4*x6 + (-
\hookrightarrow4*eps*p1(mu)**2 + 4*eps*p1(mu)*p2(mu) - 4*p1(mu)**2 + 4*p1(mu)*p2(mu))*x 2*x **x4*x5 - 
\hookrightarrow+(4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x2*x 3*x4**2 + (4*eps*p1(mu)*p2(mu) +
\hookrightarrow*eps*p1(mu)*p3(mu) + 4*p1(mu)*p2(mu) + 4*p1(mu)*p3(mu))*x 2*x 3**2*x6 + (-
\hookrightarrow*eps*p1(mu)**2 - 4*p1(mu)**2)*x 2*x 3**2*x5 + (4*eps*p1 (mu)*p2(mu) +
\hookrightarrow*p1(mu)*p2(mu))*x2*x ***2*x4 + (-2*eps*p1(mu)**2 - 2*p1(mu)**2)*x ***2*x6**2 + (-
\hookrightarrow4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x5*x6 + (-2*eps*p1 (mu)**2 --
\hookrightarrow 2*p1(mu)**2)*x 2** 2*x5**2 + (-4*eps*p1(mu)**2 - 4*p1(mu)**2)*x 2** 2*x4*x6 + (-
\hookrightarrow*eps*p1(mu)**2 - 4*p1(mu)**2)*x 2**2*x4**5 + (-2*eps*p1 (mu)**2 - -
\hookrightarrow *pl(mu)**2)*x 2**2*x4**2 + (-4*eps*p1(mu)**2 - 4*pl(mu)**2)*x2**2*x 3*x6 + (-
\hookrightarrow4*eps*p1(mu)**2 - 4*p1(mu)**2)*x2**2*x 3*x5 + (-4*eps*p1 (mu)**2 --
\hookrightarrow*p1(mu)**2)*x2**2*x 3*x4 + (-2*eps*p1(mu)**2 - 2*p1 (mu)**2)*x 2** 2*x 3**2 + +
\hookrightarrow(4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x1*x6*U + (4*eps*p2(mu)*p3(mu) + +
\hookrightarrow4*p2(mu)*p3(mu))*x1*x 5*U + (4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x1*x4*U + + 
\hookrightarrow(4*eps*p2(mu)*p3(mu) + 4*p2(mu)*p3(mu))*x1*x **U + (-4*eps*p2(mu)**2 - -
\hookrightarrow*eps*p2(mu)*p3(mu) - 4*p2(mu)**2 - 4*p2(mu)*p3(mu))*x1*x 3*x6**2 +
\hookrightarrow(4*eps*p1(mu)*p2(mu) - 4*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) + 4*p1(mu)*p2(mu) - - 
\hookrightarrow4*p2(mu)**2-4*p2(mu)*p3(mu))*x1*x 3*x5*x6 + (4*eps*p1(mu)*p2(mu) + + +
\hookrightarrow4*p1 (mu)*p2(mu))*x1*x3*x5**2 + (-8*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) - - 
\hookrightarrow*p2(mu)**2 - 4*p2(mu)*p3(mu))*x1*x **x4*x6 + (4*eps*p1 (mu)*p2(mu) - 4*eps*p2(mu)**2与
\hookrightarrow+4*p1(mu)*p2(mu) - 4*p2(mu)**2)*x1*x 3*x4*x5 + (-4*eps*p2(mu)**2 --
\hookrightarrow* p2(mu)**2)*x1*x 3*x 4**2 + (-4*eps*p2(mu)**2 - 4*eps*p2(mu)*p3(mu) - 4*p2(mu)**2 - - 
\hookrightarrow4*p2(mu)*p3(mu))*x1*x 3**2*x6 + (4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x1*x 3** 2*x5 - 
\hookrightarrow+(-4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1*x3**2*x4 + (4*eps*p1 (mu)*p2(mu) + + 
\hookrightarrow * p1 (mu) *p2(mu))*x1*x2*x6**2 + (8*eps*p1 (mu)*p2(mu) + 8*p1 (mu)*p2(mu))*x1*x 2*x 5*x6 t
\hookrightarrow+(4*eps*p1(mu)*p2(mu) + 4*p1(mu)*p2(mu))*x1*x2*x5**2 + (8*eps*p1 (mu)*p2(mu) +
\hookrightarrow * p1 (mu) *p2 (mu))*x1*x2*x4*x6 + (8*eps*p1 (mu)*p2(mu) + 8*p1 (mu)*p2(mu))*x1*x 2*x4*x5 
\hookrightarrow+(4*eps*p1(mu)*p2(mu) + 4*p1 (mu)*p2(mu))*x1*x2*x4**2 + (8*eps*p1 (mu)*p2(mu) + ¢
```



```
\hookrightarrow+(8*eps*p1(mu)*p2(mu) + 8*p1(mu)*p2(mu))*x1*x2*x 3*x4 + (4*eps*p1 (mu)*p2(mu) + +
\hookrightarrow4*p1(mu)*p2(mu))*x1*x2*x ***2 + (-2*eps*p2(mu)**2 - 2*p2(mu)**2)*x1**2*x6**2 + (-
\hookrightarrow*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x5*x6 + (-2*eps*p2(mu)**2 --
\hookrightarrow * p 2 (mu)**2)*x1**2*x5**2 + (-4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x4*x6 + (-
\hookrightarrow**eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x4*x5 + (-2*eps*p2(mu)**2 - -
\hookrightarrow 2*p2(mu)**2)*x1**2*x4**2 + (-4*eps*p2(mu)**2 - 4*p2(mu)**2)*x1** 2*x 3*x6 + (-
\hookrightarrow**eps*p2(mu)**2 - 4*p2(mu)**2)*x1**2*x 3*x5 + (-4*eps*p2(mu)**2 - -
\hookrightarrow* p}2(mu)**2)*x1**2*x 3*x4 + (-2*eps*p2(mu)**2 - 2*p2(mu)**2)*x1**2*x 3**2
```

We can also generate output in terms of Mandelstam invariants:

```
>>> replacement_rules = [
... ('p1*p1', 0),
\cdots.. ('p2*p2', 0),
... ('p3*p3', 0),
... ('p4*p4', 0),
... ('p1*p2', 's/2'),
... ('p2*p3', 't/2'),
... ('p1*p3', '-s/2-t/2')
\cdots. ]
>>> box = LoopIntegralFromPropagators(propagators, loop_momenta, external_momenta,
... numerator=numerator, Lorentz_indices=Lorentz_
\hookrightarrowindices,
... replacement_rules=replacement_rules)
>>> box.U
+(1)*x 3*x6 + (1)*x 3*x5 + (1)*x **x4 + (1)*x **x6 + (1)*x 2*x5 + (1)*x 2*x4 + (1)*x * *x3 +
\hookrightarrow+(1)*x1*x6 + (1)*x1*x5 + (1)*x1*x4 + (1)*x1*x3 + (1)*x0*x6 + (1)*x0*x5 + (1)*x0*x4
\hookrightarrow+(1)*x0*x3
>>> box.F
+(-s)*x 3*x4*x5 + (-s)*x 2*x4*x5 + (-s)*x 2*x 3*x4 + (-s)*x 1*x4*x5 + (-s)*x **x 3*x5 + (-
\hookrightarrows)*x1*x2*x6 + (-s)*x1*x2*x5 + (-s)*x1*x2*x4 + (-s)*x1*x2*x3 + (-s)*x0*x4*x5 + (-
\hookrightarrowt) *x0*x 3*x6
>>> box.numerator
+(-eps + 2)*x6*F+(-eps + 2)*x5*F + (-eps + 2)*x4*F + (-eps + 2)*x **F + (2*eps*t + +
```



```
\hookrightarrow+(-2*eps*t - 2*t)*x 3**2*x6**2 + (2*eps*s + 4*eps*(-s/2 - t/2) - 2*t)*x *** 2*x5*x6 +
\hookrightarrow(-2*eps*t - 2*t)*x 3** 2*x4*x6 + (2*eps*s + 2*s)*x 3**2*x4*x5 + (-4*eps*(-s/2 - t/2) + 
\hookrightarrow 2*s + 2*t)*x 2*x6*U + (-4*eps*(-s/2 - t/2) + 2*s + 2*t)*x **x5*U + (-4*eps*(-s/2 - t/
\hookrightarrow2) + 2*s + 2*t)*x2*x4*U + (-4*eps*(-s/2 - t/2) + 2*s + 2*t)*x **x **U + (2*eps*s + U
\hookrightarrow*eps*(-s/2 - t/2) - 2*t)*x 2*x 3*x6**2 + (2*eps*s + 4*eps*(-s/2 - t/2) -- 
\hookrightarrow2*t)*x 2*x **x5*x6 + (4*eps*s + 4*eps*(-s/2 - t/2) + 2*s - 2*t)*x 2*x 3*x4*x6 + 
\hookrightarrow(2*eps*s + 2*s)*x 2*x 3*x4*x5 + (2*eps*s + 2*s)*x 2*x 3*x 4**2 + (2*eps*s + 4*eps*(-s/2 -
\hookrightarrowt/2) - 2*t)*x 2*x 3** 2*x6 + (2*eps*s + 2*s)*x 2*x 3**2*x4 + (2*eps*t + 2*t)*x **x6*U + +
\hookrightarrow(2*eps*t + 2*t)*x1*x5*U + (2*eps*t + 2*t)*x1*x4*U + (2*eps*t + 2*t)*x1*x3*U + (-
\hookrightarrow 2*eps*t - 2*t)*x1*x **x6**2 + (2*eps*s - 2*eps*t + 2*s - 2*t)*x1*x 3*x5*x6 + (2*eps*s的
\hookrightarrow+2*s)*x1*x 3*x5**2 + (-2*eps*t - 2*t)*x1*x 3*x4*x6 + (2*eps*s + 2*s)*x1*x **x4*x5 + (-
\hookrightarrow2*eps*t - 2*t)*x1*x 3**2*x6 + (2*eps*s + 2*s)*x1*x 3**2*x5 + (2*eps*s + +
\hookrightarrow2*s)*x1*x 2*x6**2 + (4*eps*s + 4*s)*x1*x 2*x5*x6 + (2*eps*s + 2*s)*x * *x **x 5**2 + +
\hookrightarrow(4*eps*s + 4*s)*x1*x 2*x4*x6 + (4*eps*s + 4*s)*x1*x 2*x4*x5 + (2*eps*s + +
\hookrightarrow 2*s)*x1*x 2*x4**2 + (4*eps*s + 4*s)*x1*x 2*x 3*x6 + (4*eps*s + 4*s)*x **x *x **x5 + +
\hookrightarrow(4*eps*s + 4*s)*x1*x 2*x 3*x4 + (2*eps*s + 2*s)*x1*x 2*x 3**2
```


2.3 Sector Decomposition

The sector decomposition algorithm aims to factorize the polynomials P_{i} as products of a monomial and a polynomial with nonzero constant term:

$$
P_{i}\left(\left\{x_{j}\right\}\right) \longmapsto \prod_{j} x_{j}^{\alpha_{j}}\left(\text { const }+p_{i}\left(\left\{x_{j}\right\}\right)\right) .
$$

Factorizing polynomials in that way by expoliting integral transformations is the first step in an algorithm for solving dimensionally regulated integrals of the form

$$
\int_{0}^{1} \prod_{i, j} P_{i}\left(\left\{x_{j}\right\}\right)^{\beta_{i}} d x_{j}
$$

The iterative sector decomposition splits the integral and remaps the integration domain until all polynomials P_{i} in all arising integrals (called sectors) have the desired form const + polynomial. An introduction to the sector decomposition approach can be found in [HeiO8].

To demonstrate the pySecDec.decomposition module, we decompose the polynomials

```
>>> p1 = Polynomial.from_expression('x + A*y', ['x','y','z'])
>>> p2 = Polynomial.from_expression('x + B*y*z', ['x','y','z'])
```

Let us first focus on the iterative decomposition of p 1 . In the pySecDec framework, we first have to pack p1 into a Sector:

```
>>> from pySecDec.decomposition import Sector
>>> initial_sector = Sector([pl])
>>> print(initial_sector)
Sector:
Jacobian= + (1)
cast=[( + (1)) * ( + (1)*x + (A)*y)]
other= []
```

We can now run the iterative decomposition and take a look at the decomposed sectors:

```
>>> from pySecDec.decomposition.iterative import iterative_decomposition
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
. . .
Sector:
Jacobian= + (1)*x
cast=[( + (1)*x) * ( + (1) + (A)*y)]
other= []
Sector:
Jacobian= + (1)*y
cast=[( + (1)*y) * ( + (1)*x + (A))]
other= [ ]
```

The decomposition of p 2 needs two iterations and yields three sectors:

```
>>> initial_sector = Sector([p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast}=[(+(1)*x)*(+(1) +(B)*Y*z)
other= [ ]
Sector:
Jacobian= + (1)*x*y
cast=[( + (1)*x*y) * ( + (1) + (B)*z)]
other= [ ]
```

```
Sector:
Jacobian= + (1)*y*z
cast=[( + (1)*Y*z) * ( + (1)*x + (B)) ]
other= []
```

Note that we declared z as variable for p 1 although it does not depend on it. However, we have to do so if we want to simultaneously decompose p 1 and p 2 :

```
>>> initial_sector = Sector([p1, p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast=[( + (1)*x) * ( + (1) + (A)*y), ( + (1)*x) * ( + (1) + (B)*y*z) ]
other= []
Sector:
Jacobian= + (1)*x*y
cast=[( + (1)*y) * ( + (1)*x + (A)), ( + (1)*x*y) * ( + (1) + (B)*z)]
other= [ ]
Sector:
Jacobian= + (1)*y*z
cast =[( + (1)*y)* ( + (1)*x*z + (A)), ( + (1)*Y*z)* ( + (1)*x + (B))]
other= []
```

We just fully decomposed p1 and p2. In some cases, one may want to bring one polynomial, say p1, into standard form, but not neccessarily the other. For that purpose, the Sector can take a second argument. In the following code example, we bring p1 into standard form, apply all transformations to p2 as well, but stop before p2 is fully decomposed:

```
>>> initial_sector = Sector([p1], [p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
. . .
Sector:
Jacobian= + (1)*x
cast =[( + (1)*x) * ( + (1) + (A)*y)]
other=[ + (1)*x + (B)*x*Y*z]
Sector:
Jacobian= + (1)*y
cast =[( + (1)*y)* ( + (1)*x + (A))]
other=[ +(1)*x*y + (B)*y*z]
```


2.4 Expansion

The purpose of the expansion module is, as the name suggests, to provide routines to perform a series expansion. The module basically implements two routines - the Taylor expansion (pySecDec.expansion.expand_Taylor()) and an expansion of polyrational functions supporting singularities in the expansion variable (pySecDec.expansion.expand_singular()).

2.4.1 Taylor expansion

The function pySecDec.expansion.expand_Taylor() implements the ordinary Taylor expansion. It takes an algebraic expression (in the sense of the algebra module, the index of the expansion variable and the order to which the expression shall be expanded:

```
>>> from pySecDec.algebra import Expression
>>> from pySecDec.expansion import expand_Taylor
>>> expression = Expression('x**eps', ['eps'])
>>> expand_Taylor(expression, 0, 2).simplify()
    +(1) + (log( + (x) ))*eps + ((log( + (x))) * (log( + (x))) * ( + (1/2)))*eps**2
```

It is also possible to expand an expression in multiple variables simultaneously:

```
>>> expression = Expression('x**(eps + alpha)', ['eps', 'alpha'])
>>> expand_Taylor(expression, [0,1], [2,0]).simplify()
    +(1) + (log( + (x)))*eps + ((log( + (x))) * (log( + (x))) * ( + (1/2)))*eps**2
```

The command above instructs pySecDec.expansion.expand_Taylor() to expand the expression to the second order in the variable indexed 0 (eps) and to the zeroth order in the variable indexed 1 (alpha).

2.4.2 Laurent Expansion

pySecDec.expansion.expand_singular() Laurent expands polyrational functions.
Its input is more restrictive than for the Taylor expansion. It expects a Product where the factors are either Polynomials or ExponentiatedPolynomials with exponent $=-1$:

```
>>> from pySecDec.expansion import expand_singular
>>> expression = Expression('l/(eps + alpha)', ['eps', 'alpha']).simplify()
>>> expand_singular(expression, 0, 1)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 241, in
    \hookrightarrowexpand_singular
            return _expand_and_flatten(product, indices, orders, _expand_singular_step)
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 209, in _
\hookrightarrowexpand_and_flatten
            expansion = recursive_expansion(expression, indices, orders)
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 198, in
    ->recursive_expansion
            expansion = expansion_one_variable(expression, index, order)
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 82, in _
\hookrightarrowexpand_singular_step
            raise TypeError('`product` must be a `Product`')
TypeError: `product` must be a `Product`
>>> expression # ``expression`` is indeed a polyrational function.
( + (1)*alpha + (1)*eps)**(-1)
```

```
>>> type(expression) # It is just not packed in a ``Product`` as ``expand_singular`` v
\hookrightarrowexpects.
<class 'pySecDec.algebra.ExponentiatedPolynomial'>
>>> from pySecDec.algebra import Product
>>> expression = Product(expression)
>>> expand_singular(expression, 0, 1)
    +(( + (1))* (( + (1)*alpha)** (-1))) + (( + (-1)) * (( + (1)*alpha**2)**(-1)))*eps
```

Like in the Taylor expansion, we can expand simultaneously in multiple parameters. Note, however, that the result of the Laurent expansion depends on the ordering of the expansion variables. The second argument of pySecDec.expansion.expand_singular() determines the order of the expansion:

```
>>> expression = Expression('1/(2*eps) * I/(eps + alpha)', ['eps', 'alpha']).
\hookrightarrowsimplify()
>>> eps_first = expand_singular(expression, [0,1], [1,1])
>>> eps_first
    +( +(( + (1/2))* (( + (1))** (-1)))*alpha**-1)*eps**-1 + ( + (( + (-1/2)) * (( + +
\hookrightarrow(1))**(-1)))*alpha**-2) + ( + (( + (1)) * (( + (2))**(-1)))*alpha**-3)*eps
>>> alpha_first = expand_singular(expression, [1,0], [1,1])
>>> alpha_first
    +( + (( + (1/2))* (( + (1))**(-1)))*eps**-2) + ( + (( + (-1/2)) * (( + (1))**(-
(1)))*eps**-3)*alpha
```

The expression printed out by our algebra module are quite messy. In order to obtain nicer output, we can convert these expressions to the slower but more high level sympy:

```
>>> import sympy as sp
>>> eps_first = expand_singular(expression, [0,1], [1,1])
>>> alpha_first = expand_singular(expression, [1,0], [1,1])
>>> sp.sympify(eps_first)
1/(2*alpha*eps) - 1/(2*alpha**2) + eps/(2*alpha**3)
>>> sp.sympify(alpha_first)
-alpha/(2*eps**3) + 1/(2*eps**2)
```


REFERENCE GUIDE

Implementation of a simple computer algebra system
class pySecDec.algebra.DerivativeTracker (expression, copy=False)
Keep track of all derivatives taken of an Expression. When the derive() method is called, save the multiindex of the derivative to be taken.

Parameters

- expression - _Expression in the sense of this module; The expression to track the derivatives.
- copy - bool; Whether or not to copy the expression.

The derivative multiindices are the keys in the dictionary self. derivatives. The values are lists with two elements: Its first element is the index to derive the derivative indicated by the multiindex in the second element by, in order to abtain the derivative indicated by the key:

```
>>> from pySecDec.algebra import Polynomial, DerivativeTracker
>>> poly = Polynomial.from_expression('x**2*y + y**2', ['x','y'])
>>> tracker = DerivativeTracker(poly)
>>> tracker.derive(0).derive(1)
DerivativeTracker( + (2)*x, index = (1, 1), derivatives = {(1, 0): [0, (0, 0)],ь
\hookrightarrow(1, 1): [1, (1, 0)]})
>>> tracker.derivatives
{(1, 0): [0, (0, 0)], (1, 1): [1, (1, 0)]}
```


copy ()

Return a copy of a DerivativeTracker.

derive (index)

Generate the derivative of the expression and update self. derivatives.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Simplify the expression.
class pySecDec.algebra.ExponentiatedPolynomial(expolist, coeffs, exponent=1, polysymbols=' x ', copy=True)
Like Polynomial, but with a global exponent. polynomial exponent

Parameters

- expolist - iterable of iterables; The variable's powers for each term.
- coeffs - iterable; The coefficients of the polynomial.
- exponent - object, optional; The global exponent.
- polysymbols - iterable or string, optional; The symbols to be used for the polynomial variables when converted to string. If a string is passed, the variables will be consecutively numbered.

For example: expolist $=[[2,0],[1,1]]$ coeffs $=\left[{ }^{\prime} A^{\prime},,{ }^{\prime} B^{\prime}\right]$

- polysymbols='x' (default) <-> "A*x0**2 + B*x0*x1"
- polysymbols=['x','y'] <-> "A*x**2 + B*x*y"
- copy - bool; Whether or not to copy the expolist, the coeffs, and the exponent.

Note: If copy is False, it is assumed that the expolist, the coeffs and the exponent have the correct type.
copy ()
Return a copy of a Polynomial or a subclass.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
simplify()
Apply the identity $<$ something $>^{* *} 0=1$ or $<$ something $>* * 1=$ somethng $>$ if possible, otherwise call the simplify method of the base class. Convert exponent to symbol if possible.
pySecDec.algebra.Expression (expression, polysymbols)
Convert a sympy expression to an expression in terms of this module.

Parameters

- expression - string or sympy expression; The expression to be converted
- polysymbols - iterable of strings or sympy symbols; The symbols to be stored as expolists (see Polynomial) where possible.
class pySecDec.algebra.Function (symbol, *arguments, **kwargs)
Symbolic function that can take care of parameter transformations.

Parameters

- symbol - string; The symbol to be used to represent the Function.
- arguments - arbitrarily many _Expression; The arguments of the Function.
- copy - bool; Whether or not to copy the arguments.

copy ()

Return a copy of a Function.

derive (index)

Generate the derivative by the parameter indexed index. The derivative of a function with symbol f by some index is denoted as df _d<index>.

Parameters index - integer; The index of the paramater to derive by.
replace (expression, index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.

simplify()

Simplify the arguments.
class pySecDec.algebra.Log (arg, copy=True)
The (natural) logarithm to base e ($2.718281828459 .$.$) . Store the expressions log (arg).$

Parameters

- arg - _Expression; The argument of the logarithm.
- copy - bool; Whether or not to copy the arg.
copy ()
Return a copy of a Log.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
replace (expression, index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Apply $\log (1)=0$.
class pySecDec.algebra.LogOfPolynomial (expolist, coeffs, polysymbols=' x ', copy=True)
The natural logarithm of a Polynomial.

Parameters

- expolist - iterable of iterables; The variable's powers for each term.
- coeffs - iterable; The coefficients of the polynomial.
- exponent - object, optional; The global exponent.
- polysymbols - iterable or string, optional; The symbols to be used for the polynomial variables when converted to string. If a string is passed, the variables will be consecutively numbered.

For example: expolist $=[[2,0],[1,1]]$ coeffs $=[" A ", ’ B "]$

- polysymbols=' x ' (default) <-> "A*x0** $2+\mathrm{B} * \mathrm{x} 0 * \mathrm{x} 1$ "
- polysymbols=['x','y'] <-> "A*x**2 + B*x*y"

derive (index)

Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
static from_expression (expression, polysymbols)
Alternative constructor. Construct the LogOfPolynomial from an algebraic expression.

Parameters

- expression - string or sympy expression; The algebraic representation of the polynomial, e.g. " 5 *x $1 * * 2+\mathrm{x} 1 * \mathrm{x} 2$ "
- polysymbols - iterable of strings or sympy symbols; The symbols to be interpreted as the polynomial variables, e.g. "['x1','x2']".
simplify()
Apply the identity $\log (1)=0$, otherwise call the simplify method of the base class.
class pySecDec.algebra.Polynomial (expolist, coeffs, polysymbols='x', copy=True)
Container class for polynomials. Store a polynomial as list of lists counting the powers of the variables. For example the polynomial " $\mathrm{x} 1 * * 2+\mathrm{x} 1 * \mathrm{x} 2$ " is stored as $[[2,0],[1,1]]$.

Coefficients are stored in a separate list of strings, e.g. "A*x0**2 + B*x0*x1" <-> [[2,0],[1,1]] and [" A "," B "].

Parameters

- expolist - iterable of iterables; The variable's powers for each term.

Hint: Negative powers are allowed.

- coeffs - 1d array-like with numerical or sympy-symbolic (see http://www.sympy.org/) content, e.g. [x,1,2] where x is a sympy symbol; The coefficients of the polynomial.
- polysymbols - iterable or string, optional; The symbols to be used for the polynomial variables when converted to string. If a string is passed, the variables will be consecutively numbered.

For example: expolist $=[[2,0],[1,1]]$ coeffs $=\left[{ }^{\prime} A^{\prime},,>{ }^{\prime}{ }^{\prime} ’\right]$

- polysymbols=' x ' (default) <-> "A*x0** $2+\mathrm{B} * \mathrm{x} 0 * \mathrm{x} 1$ "
- polysymbols=['x','y'] <-> "A*x**2 + B*x*y"
- copy - bool; Whether or not to copy the expolist and the coeffs.

Note: If copy is False, it is assumed that the expolist and the coeffs have the correct type.
becomes_zero_for (zero_params)
Return True if the polynomial becomes zero if the parameters passed in zero_params are set to zero. Otherwise, return False.

Parameters zero_params - iterable of integers; The indices of the parameters to be checked.
copy ()
Return a copy of a Polynomial or a subclass.

derive (index)

Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
static from_expression (expression, polysymbols)
Alternative constructor. Construct the polynomial from an algebraic expression.

Parameters

- expression - string or sympy expression; The algebraic representation of the polynomial, e.g. " $5 * x 1^{*} * 2+\mathrm{x} 1 * \mathrm{x} 2$ "
- polysymbols - iterable of strings or sympy symbols; The symbols to be interpreted as the polynomial variables, e.g. " $[$ 'x1','x2']".
has_constant_term()
Return True if the polynomial can be written as:

$$
\text { const }+\ldots
$$

Otherwise, return False.
replace (expression, index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Combine terms that have the same exponents of the variables.
class pysecDec.algebra.Pow (base, exponent, copy=True)
Exponential. Store two expressions A and B to be interpreted as the exponential $A * * B$.

Parameters

- base - _Expression; The base A of the exponential.
- exponent - _Expression; The exponent B.
- copy - bool; Whether or not to copy base and exponent.
copy ()
Return a copy of a Pow.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
replace (expression, index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify ()
Apply the identity <something $>^{* *} 0=1$ or $<$ something $>^{* *} 1=$ something if possible. Convert to ExponentiatedPolynomial if possible.
class pySecDec.algebra.Product (*factors, **kwargs)
Product of polynomials. Store one or polynomials p_{i} to be interpreted as product $\prod_{i} p_{i}$.

Parameters

- factors - arbitrarily many instances of Polynomial; The factors p_{i}.
- copy - bool; Whether or not to copy the factors.
p_{i} can be accessed with self.factors[i].
Example:

```
p = Product (p0, p1)
p0 = p.factors[0]
p1 = p.factors[1]
```

```
copy()
```

Return a copy of a Product.
derive (index)
Generate the derivative by the parameter indexed index. Return an instance of the optimized ProductRule.

Parameters index - integer; The index of the paramater to derive by.
replace (expression, index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
If one or more of self.factors is a Product, replace it by its factors. If only one factor is present, return that factor. Remove factors of one and zero.
class pySecDec.algebra.ProductRule (*expressions, **kwargs)
Store an expression of the form

$$
\sum_{i} c_{i} \prod_{j} \prod_{k}\left(\frac{d}{d x_{k}}\right)^{n_{i j k}} f_{j}\left(\left\{x_{k}\right\}\right)
$$

The main reason for introducing this class is a speedup when calculating derivatives. In particular, this class implements simplifications such that the number of terms grows less than exponentially (scaling of the naive implementation of the product rule) with the number of derivatives.

Parameters expressions - arbitrarily many expressions; The expressions f_{j}.
copy ()
Return a copy of a ProductRule.
derive (index)
Generate the derivative by the parameter indexed index. Note that this class is particularly designed to hold derivatives of a product.

Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Combine terms that have the same derivatives of the expressions.
class pySecDec.algebra.Sum (*summands, **kwargs)
Sum of polynomials. Store one or polynomials p_{i} to be interpreted as product $\sum_{i} p_{i}$.
Parameters
- summands - arbitrarily many instances of Polynomial; The summands p_{i}.
- copy - bool; Whether or not to copy the summands.
p_{i} can be accessed with self. summands [i].
Example:

```
p = Sum(p0, p1)
p0 = p.summands[0]
p1 = p.summands[1]
```


copy ()

Return a copy of a Sum.

```
derive(index)
```

Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
replace (expression, index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
If one or more of self. summands is a Sum, replace it by its summands. If only one summand is present, return that summand. Remove zero from sums.
class pySecDec.decomposition.Sector (cast, other=[], Jacobian=None)
Container class for sectors that arise during the sector decomposition.

Parameters

- cast - iterable of algebra.Product or of algebra.Polynomial; The polynomials to be cast to the form <monomial> * (const $+\ldots$)
- other - iterable of algebra.Polynomial, optional; All variable transformations are applied to these polynomials but it is not attempted to achieve the form <monomial> * (const + ...)
- Jacobian - algebra.Polynomial with one term, optional; The Jacobian determinant of this sector. If not provided, the according unit monomial $\left(1^{*} \mathrm{x} 0^{\wedge} 0^{*} \mathrm{x} 1^{\wedge} 0 \ldots\right)$ is assumed.

pySecDec.decomposition.hide (polynomial, count)

Hide the last count variables of a polynomial. This function is meant to be used before instantiating a Sector. It splits the expolist and the polysymbols at the index count.

See also:

unhide()

Warning: The polynomial is NOT copied.

pySecDec.decomposition.unhide (polynomiall, polynomial2)

Undo the operation hide (); i.e. unhide (*hide (polynomial)) is equal to polynomial.

See also:

```
hide()
```

Warning: polynomiall is modified in place.

The iterative sector decomposition routines
exception pySecDec.decomposition.iterative.EndOfDecomposition
This exception is raised if the function iteration_step () is called although the sector is already in standard form.
pySecDec.decomposition.iterative.iteration_step (sector)
Run a single step of the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2 [Hei08]. Return an iterator of Sector - the arising subsectors.

Parameters sector - Sector; The sector to be decomposed.
pySecDec.decomposition.iterative.iterative_decomposition (sector)
Run the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2 [Hei08]. Return an iterator of Sector - the arising subsectors.

Parameters sector - Sector; The sector to be decomposed.
pySecDec.decomposition.iterative.primary_decomposition (sector)
Perform the primary decomposition as described in chapter 3.2 (part I) of arXiv:0803.4177v2 [Hei08]. Return a list of Sector - the primary sectors. For N Feynman parameters, there are N primary sectors where the i-th Feynman parameter is set to l in sector i.

See also:

primary_decomposition_polynomial()
Parameters sector - Sector; The container holding the polynomials (typically U and F) to eliminate the Dirac delta from.
pySecDec.decomposition.iterative.primary_decomposition_polynomial (polynomial) Perform the primary decomposition on a single polynomial.

See also:

primary_decomposition()
Parameters polynomial - algebra.Polynomial; The polynomial to eliminate the Dirac delta from.
pySecDec.decomposition.iterative.remap_parameters (singular_parameters, Jacobian, *polynomials)
Remap the Feynman parameters according to eq. (16) of arXiv:0803.4177v2 [Hei08]. The parameter whose index comes first in singular_parameters is kept fix.

The remapping is done in place; i.e. the polynomials are NOT copied.

Parameters

- singular_parameters - list of integers; The indices α_{r} such that at least one of polynomials becomes zero if all $t_{\alpha_{r}} \rightarrow 0$.
- Jacobian - Polynomial with one term and no coefficients; The Jacobian determinant is multiplied to this polynomial.
- polynomials - abritrarily many instances of algebra.Polynomial where all of these have an equal number of variables; The polynomials of Feynman parameters to be remapped. These are typically F and U.
Example:

```
remap_parameters([1,2], Jacobian, F, U)
```

The geometric sector decomposition routines

```
pySecDec.decomposition.geometric.Cheng_Wu(sector,index=-1)
```

Replace one Feynman parameter by one. This means integrating out the Dirac delta according to the Cheng-Wu theorem.

Parameters

- sector - Sector; The container holding the polynomials (typically U and F) to eliminate the Dirac delta from.
- index - integer, optional; The index of the Feynman parameter to eliminate. Default: -1 (the last Feynman parameter)
class pySecDec.decomposition.geometric.Polytope (vertices=None, facets=None)
Representation of a polytope defined by either its vertices or its facets. Call complete_representation () to translate from one to the other representation.

Parameters

- vertices - two dimensional array; The polytope in vertex representation. Each row is interpreted as one vertex.
- facets - two dimensional array; The polytope in facet representation. Each row represents one facet F. A row in facets is interpreted as one normal vector n_{F} with additionally the constant a_{F} in the last column. The points v of the polytope obey

$$
\bigcap_{F}\left(\left\langle n_{F}, v\right\rangle+a_{F}\right) \geq 0
$$

complete_representation (normaliz='normaliz', workdir='normaliz_tmp', keep_workdir=False)
Transform the vertex representation of a polytope to the facet representation or the other way round. Remove surplus entries in self.facets or self.vertices.

Note: This function calls the command line executable of normaliz [BIR]. It is designed for normaliz version 3.0.0

Parameters

- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

- keep_workdir - bool; Whether or not to delete the workdir after execution.
vertex_incidence_lists()
Return for each vertex the list of facets it lies in (as dictonary). The keys of the output dictonary are the vertices while the values are the indices of the facets in self.facets.
pySecDec.decomposition.geometric.convex_hull (*polynomials)
Calculate the convex hull of the Minkowski sum of all polynomials in the input. The algorithm sets all coefficients to one first and then only keeps terms of the polynomial product that have coefficient 1 . Return the list of these entries in the expolist of the product of all input polynomials.

Parameters polynomials - abritrarily many instances of Polynomial where all of these have an equal number of variables; The polynomials to calculate the convex hull for.
pySecDec.decomposition.geometric.geometric_decomposition (sector, normaliz='normaliz', workdir='normaliz_tmp')
Run the sector decomposition using the geomethod as described in [BHJ+15].

Parameters

- sector - Sector; The sector to be decomposed.
- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.
pySecDec.decomposition.geometric.transform_variables (polynomial, transformation, polysymbols='y')
Transform the parameters x_{i} of a pySecDec.algebra.Polynomial,

$$
x_{i} \rightarrow \prod_{j} x_{j}^{T_{i j}}
$$

, where $T_{i j}$ is the transformation matrix.

Parameters

- polynomial - pySecDec.algebra.Polynomial; The polynomial to transform the variables in.
- transformation - two dimensional array; The transformation matrix $T_{i j}$.
- polysymbols - string or iterable of strings; The symbols for the new variables. This argument is passed to the default constructor of pySecDec.algebra.Polynomial. Refer to the documentation of pySecDec.algebra.Polynomial for further details.
pySecDec.decomposition.geometric.triangulate (cone, normaliz='normaliz', workdir='normaliz_tmp', keep_workdir=False)
Split a cone into simplicial cones; i.e. cones defined by exactly D rays where D is the dimensionality.

Note: This function calls the command line executable of normaliz. It is designed for normaliz version 3.0.0

Parameters

- cone - two dimensional array; The defining rays of the cone.
- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

- keep_workdir - bool; Whether or not to delete the workdir after execution.
miscellaneous routines
pySecDec.misc.adjugate (M)
Calculate the adjugate of a matrix.
Parameters M-a square-matrix-like array;
pySecDec.misc.all_pairs (iterable)
Return all possible pairs of a given set. all_pairs $([1,2,3,4])-->[(1,2),(3,4)]$ $[(1,3),(2,4)][(1,4),(2,3)]$

Parameters iterable - iterable; The set to be split into all possible pairs.
pySecDec.misc.argsort_2D_array (array)
Sort a 2D array according to its row entries. The idea is to bring identical rows together.

See also:

If your array is not two dimesional use argsort_ND_array ().

Example:

input		sorted
123		123
234	123	
123	234	

Return the indices like numpy's argsort () would.
Parameters array - 2D array; The array to be argsorted.
pySecDec.misc.argsort_ND_array (array)
Like argsort_2D_array (), this function groups identical entries in an array with any dimensionality greater than (or equal to) two together.

Return the indices like numpy's argsort () would.

See also:

argsort_2D_array()
Parameters array - ND array, $N>=2$; The array to be argsorted.
pySecDec.misc.assert_degree_at_most_max_degree (expression, variables, max_degree, error_message)
Assert that expression is a polynomial of degree less or equal max_-_degree in the variables.
pySecDec.misc.cached_property (method)
Like the builtin property to be used as decorator but the method is only called once per instance.
Example:

```
class C(object):
    'Sum up the numbers from one to `N`.'
    def __init__(self, N):
        self.N = N
    @cached_property
    def sum(self):
        result = 0
        for i in range(1, self.N + 1):
            result += i
        return result
```

pySecDec.misc.det (M)

Calculate the determinant of a matrix.
Parameters M-a square-matrix-like array;
pySecDec.misc.doc (docstring)
Decorator that replaces a function's docstring with docstring.
Example:

```
@doc('documentation of 'some_funcion' ')
def some_function(*args, **kwargs):
    pass
```

pySecDec.misc.missing (full, part)
Return the elements in full that are not contained in part. Raise ValueError if an element is in part but not in full. missing([1,2,3],[1]) --> [2,3] missing([1,2,3,1],[1,2]) --> [3,1] missing([1,2,3],[1,'a']) --> ValueError

Parameters

- full - iterable; The set of elements to complete part with.
- part - iterable; The set to be completed to a superset of full.
pySecDec.misc.powerset (iterable, exclude_empty=False, stride =1)
Return an iterator over the powerset of a given set. powerset $([1,2,3])-->()(1),(2),(3$, $(1,2)(1,3)(2,3)(1,2,3)$

Parameters

- iterable - iterable; The set to generate the powerset for.
- exclude_empty - bool, optional; If True, skip the empty set in the powerset. Default is False.
- stride - integer; Only generate sets that have a multiple of stride elements. powerset $([1,2,3]$, stride=2) $-->()(1,2)(1,3)(2,3)$
pySecDec.misc.sympify_symbols (iterable, error_message, allow_number=False)
sympify each item in iterable and assert that it is a symbol.
Routines to Feynman parametrize a loop integral
class pySecDec.loop_integral.LoopIntegral (*args, **kwargs)
Container class for loop integrals. The main purpose of this class is to convert a loop integral from the momentum representation to the Feynman parameter representation.

It is possible to provide either the graph of the loop integrals as adjacency list, or the propagators.
The Feynman parametrized integral is a product of the following expressions that are accessible as member properties:

```
\bulletself.regulator ** self.regulator_power
-self.Gamma_factor
\bulletself.exponentiated_U
\bulletself.exponentiated_F
-self.numerator
\bulletself.measure,
```

where self is an instance of either LoopIntegralFromGraph or LoopIntegralFromPropagators.
Whereas self.numerator describes the numerator polynomial generated by tensor numerators or inverse propagators, self.measure contains the monomial associated with the integration measure in the case of propagator powers $\neq 1$. The Gamma functions in the denominator belonging to the measure, however, are multiplied to the overall Gamma factor given by self. Gamma_factor. The overall sign $(-1)^{N_{\nu}}$ is included in self.numerator.

See also:

-input as graph: LoopIntegralFromGraph
-input as list of propagators: LoopIntegralFromPropagators
class pySecDec.loop_integral.LoopIntegralFromGraph (internal_lines, external_lines, replacement_rules $=[], \quad$ Feynman_parameters='x', regulator='eps', regulator_power $=0$, dimensionality $=$ '4-2*eps', powerlist=[])
Construct the Feynman parametrization of a loop integral from the graph using the cut construction method.
Example:

```
>>> from pySecDec.loop_integral import *
>>> internal_lines = [['0',[1,2]], ['m',[2,3]], ['m',[3,1]]]
>>> external_lines = [['p1',1],['p2',2],['-p12',3]]
>>> li = LoopIntegralFromGraph(internal_lines, external_lines)
>>> li.exponentiated_U
( + (1)*x0 + (1)*x1 + (1)*x2)**(2*eps - 1)
>>> li.exponentiated_F
(+(m**2)*x2**2+(2*m**2-p12**2)*x1*x2 + (m**2)*x1**2 + (m**2 - p1**2)*x0*x2 - 
\hookrightarrow+(m**2 - p 2**2)*x0*x1)**(-eps - 1)
```


Parameters

- internal_lines - iterable of internal line specification, consisting of string or sympy expression for mass and a pair of strings or numbers for the vertices, e.g. [['m', [1,2]], ['0', $[2,1]]]$.
- external_lines - iterable of external line specification, consisting of string or sympy expression for external momentum and a strings or number for the vertex, e.g. [['p1', 1], ['p2', 2]].
- replacement_rules - iterable of iterables with two strings or sympy expressions, optional; Symbolic replacements to be made for the external momenta, e.g. definition of Mandelstam variables. Example: [('p1*p2', 's'), ('p1**2', 0)] where p1 and p2 are external momenta. It is also possible to specify vector replacements, for example [(' p 4 ', '$\left.\left.(\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3)^{\prime}\right)\right]$.
- Feynman_parameters - iterable or string, optional; The symbols to be used for the Feynman parameters. If a string is passed, the Feynman parameter variables will be consecutively numbered starting from zero.
- regulator - string or sympy symbol, optional; The symbol to be used for the dimensional regulator (typically ϵ or ϵ_{D})

Note: If you change this symbol, you have to adapt the dimensionality accordingly.

- regulator_power - integer; The regulator to this power will be multiplied by the numerator.
- dimensionality - string or sympy expression, optional; The dimensionality; typically $4-2 \epsilon$, which is the default value.
- powerlist - iterable, optional; The powers of the propergators, possibly dependent on the regulator. In case of negative powers, the derivative with respect to the corresponding Feynman parameter is calculated as explained in Section 3.2.4 of Ref. [BHJ+15]. If negative powers are combined with a tensor numerator, the derivative acts on the Feynmanparametrized tensor numerator as well, which should lead to a consistent result.
class pySecDec.loop_integral.LoopIntegralFromPropagators (propagators, loop_momenta, external_momenta=[],
Lorentz_indices=[], numer-
ator $=1$, metric_tensor='g', replacement_rules=[],
Feynman_parameters='x', regulator ='eps', regulator_power=0, dimensionality $=$ '4- 2 *eps', powerlist=[])
Construct the Feynman parametrization of a loop integral from the algebraic momentum representation.

See also:

[Hei08], [GKR+11]
Example:

```
>>> from pySecDec.loop_integral import *
>>> propagators = ['k**2', '(k - p)**2']
>>> loop_momenta = ['k']
>>> li = LoopIntegralFromPropagators(propagators, loop_momenta)
>>> li.exponentiated_U
( + (1)*x0 + (1)*x1)**(2*eps - 2)
>>> li.exponentiated_F
( + (-p**2)*x0*x1)**(-eps)
```

The 1st (U) and 2nd (F) Symanzik polynomials and their exponents can also be accessed independently:

```
>>> li.U
    + (1)*x0 + (1)*x1
>>> li.F
    +(-p**2)*x0*x1
>>>
>>> li.exponent_U
2*eps - 2
```

```
>>> li.exponent_F
-eps
```


Parameters

- propagators - iterable of strings or sympy expressions; The propagators, e.g. ['k1**2', '(k1-k2)**2-m1**2'].
- loop_momenta - iterable of strings or sympy expressions; The loop momenta, e.g. ['k1','k2'].
- external_momenta - iterable of strings or sympy expressions, optional; The external momenta, e.g. ['p1','p2']. Specifying the external_momenta is only required when a numerator is to be constructed.
- Lorentz_indices - iterable of strings or sympy expressions, optional; Symbols to be used as Lorentz indices in the numerator.

See also:

parameter numerator
Parameters numerator - string or sympy expression, optional; The numerator of the loop integral. Scalar products must be passed in index notation e.g. "k1(mu)*k2(mu)". The numerator should be a sum of products of exclusively: * numbers * scalar products (e.g. "p1(mu)*k1(mu)*p1(nu)*k2(nu)") * symbols (e.g. "m")

Examples:

- $\quad \mathrm{p} 1(\mathrm{mu}) * \mathrm{k} 1(\mathrm{mu})^{*} \mathrm{p} 1(\mathrm{nu}) * \mathrm{k} 2(\mathrm{nu})+4^{*} \mathrm{~s}^{*} \mathrm{eps}^{*} \mathrm{k} 1(\mathrm{mu}) * \mathrm{k} 1(\mathrm{mu})$)
- ' $\mathrm{p} 1(\mathrm{mu}) *(\mathrm{k} 1(\mathrm{mu})+\mathrm{k} 2(\mathrm{mu}))^{*} \mathrm{p} 1(\mathrm{nu}) * \mathrm{k} 2(\mathrm{nu})$,
- 'p1(mu)*k1(mu)*my_function(eps)'

Hint: It is possible to use numbers as indices, for example ' $\mathrm{p} 1(\mathrm{mu})^{*} \mathrm{p} 2(\mathrm{mu}) * \mathrm{k} 1(\mathrm{nu}) * \mathrm{k} 2(\mathrm{nu})=$ $\mathrm{p} 1(1)^{*} \mathrm{p} 2(1)^{*} \mathrm{k} 1(2)^{*} \mathrm{k} 2(2)$.

Hint: The numerator may have uncontracted indices, e.g. 'k1(mu)*k2(nu)'

Warning: All Lorentz indices (including the contracted ones) must be explicitly defined using the parameter Lorentz_indices.

Warning: It is assumed that the numerator is and all its derivatives by the regulator are finite and defined if $\epsilon=0$ is inserted explicitly. In particular, if user defined functions (like in the example $\left.\mathrm{p} 1(\mathrm{mu}) * \mathrm{k} 1(\mathrm{mu}) * m y _f u n c t i o n(e p s)\right)$ appear, make sure that my_function (0) is finite.

Hint: In order to mimic a singular user defined function, use the parameter regulator_power. For example, instead of numerator $=$ gamma (eps) you could enter numerator $=$ eps_times_gamma (eps) in
conjunction with regulator_power $=-1$

Warning: The numerator is very flexible in its input. However, that flexibility comes for the price of less error safety. We have no way of checking for all possible mistakes in the input. If your numerator is more advanced than in the examples above, you should proceed with great caution.

Parameters

- metric_tensor - string or sympy symbol, optional; The symbol to be used for the (Minkowski) metric tensor $g^{\mu \nu}$.
- replacement_rules - iterable of iterables with two strings or sympy expressions, optional; Symbolic replacements to be made for the external momenta, e.g. definition of Mandelstam variables. Example: [('p1*p2', 's'), ('p1*2', 0)] where p1 and p2 are external momenta. It is also possible to specify vector replacements, for example [(' $\mathrm{p} 4^{\prime}$, '$\left.\left.(\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3)^{\prime}\right)\right]$.
- Feynman_parameters - iterable or string, optional; The symbols to be used for the Feynman parameters. If a string is passed, the Feynman parameter variables will be consecutively numbered starting from zero.
- regulator - string or sympy symbol, optional; The symbol to be used for the dimensional regulator (typically ϵ or ϵ_{D})

Note: If you change this symbol, you have to adapt the dimensionality accordingly.

- regulator_power - integer; The regulator to this power will be multiplied by the numerator.
- dimensionality - string or sympy expression, optional; The dimensionality; typically $4-2 \epsilon$, which is the default value.
- powerlist - iterable, optional; The powers of the propergators, possibly dependent on the regulator. In case of negative powers, the derivative with respect to the corresponding Feynman parameter is calculated as explained in Section 3.2.4 of Ref. [BHJ+15]. If negative powers are combined with a tensor numerator, the derivative acts on the Feynmanparametrized tensor numerator as well, which should lead to a consistent result.

Routines to isolate the divergencies in an ϵ expansion
pySecDec.subtraction.integrate_pole_part (polyprod, *indices)
Transform an integral of the form

$$
\int_{0}^{1} d t_{j} t_{j}^{\left(a-b \epsilon_{1}-c \epsilon_{2}+\ldots\right)} \mathcal{I}\left(\sqcup_{\mid},\left\{\sqcup_{\rangle \neq \mid}\right\}, \epsilon_{\infty}, \epsilon_{\epsilon}, \ldots\right)
$$

into the form

$$
\sum_{p=0}^{|a|-1} \frac{1}{a+p+1-b \epsilon_{1}-c \epsilon_{2}-\ldots} \frac{\mathcal{I}^{(} \vee^{\prime}\left(1,\left\{\sqcup_{\rangle \neq \mid}\right\}, \epsilon_{\infty}, \epsilon_{\epsilon}, \ldots\right)}{p!}+\int_{0}^{1} d t_{j} t_{j}^{\left(a-b \epsilon_{1}-c \epsilon_{2}+\ldots\right)} R\left(t_{j},\left\{t_{i \neq j}\right\}, \epsilon_{1}, \epsilon_{2}, \ldots\right)
$$

, where $\mathcal{I}^{(}{ }^{\mathcal{V}}$ is denotes the p-th derivative of \mathcal{I} with respect to t_{j}. The equations above are to be understood schematically.

See also:

This function implements the transformation from equation (19) to (21) as described in arXiv:0803.4177v2 [Hei08].

Parameters

- polyprod-algebra. Product of the form <product of <monomial>**(a_j + ...) > * <regulator poles of cal_I> * <cal_I>; The input product as decribed above. The <product of <monomial>**(a_j + ...)> should be a pySecDec.algebra.Product of <monomial>**(a_j $+\ldots)$ as described below. The <monomial>** $\left(\mathrm{a}_{-} \mathrm{j}+\ldots\right)$ should be an pySecDec.algebra.ExponentiatedPolynomial with exponent being a Polynomial of the regulators $\epsilon_{1}, \epsilon_{2}, \ldots$. Although no dependence on the Feynman parameters is expected in the exponent, the polynomial variables should be the Feynman parameters and the regulators. The constant term of the exponent should be numerical. The polynomial variables of monomial and the other factors (interpreted as \mathcal{I}) are interpreted as the Feynman parameters and the epsilon regulators. Make sure that the last factor ($<$ cal_I \rangle) is defined and finite for $\epsilon=0$. All poles for $\epsilon \rightarrow 0$ should be made explicit by putting them into <regulator poles of cal_I> as pySecDec.algebra. Pow with exponent $=-1$ and the base of type pySecDec.algebra.Polynomial.
- indices - arbitrarily many integers; The index/indices of the parameter(s) to partially integrate. j in the formulae above.

Return the pole part and the numerically integrable remainder as a list. That is the sum and the integrand of equation (21) in arXiv:0803.4177v2 [Hei08]. Each returned list element has the same structure as the input polyprod.

Routines to series expand singular and nonsingular expressions
pySecDec.expansion.expand_Taylor (expression, indices, orders)
Series/Taylor expand a nonsingular expression around zero.
Return a algebra.Polynomial-the series expansion.

Parameters

- expression - an expression composed of the types defined in the module algebra; The expression to be series expanded.
- indices - integer or iterable of integers; The indices of the parameters to expand. The ordering of the indices defines the ordering of the expansion.
- order - integer or iterable of integers; The order to which the expansion is to be calculated.
pySecDec.expansion.expand_singular (product, indices, orders)
Series expand a potentially singular expression of the form

$$
\frac{a_{N} \epsilon_{0}+b_{N} \epsilon_{1}+\ldots}{a_{D} \epsilon_{0}+b_{D} \epsilon_{1}+\ldots}
$$

Return a algebra.Polynomial-the series expansion.

Parameters

- product - algebra.Product with factors of the form <polynomial> and <polynomial> ** -1 ; The expression to be series expanded.
- indices - integer or iterable of integers; The indices of the parameters to expand. The ordering of the indices defines the ordering of the expansion.
- order - integer or iterable of integers; The order to which the expansion is to be calculated.

REFERENCES

INDICES AND TABLES

- genindex
- modindex
- search
[BH00] T. Binoth and G. Heinrich An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741, doi:10.1016/S0550-3213(00)00429-6, arXiv:hep-ph/0004013
[BHJ+15] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, 2015, Comput.Phys.Comm. 196
doi:10.1016/j.cpc.2015.05.022, arXiv:1502.06595
[BIR] W. Bruns and B. Ichim and T. Römer and R. Sieg and C. Söger Normaliz. Algorithms for rational cones and affine monoids, available at https://www.normaliz.uni-osnabrueck.de
[GKR+11] J. Gluza, K. Kajda, T. Riemann, V. Yundin Numerical Evaluation of Tensor Feynman Integrals in Euclidean Kinematics, 2011, Eur.Phys.J.C71, doi:10.1140/epjc/s10052-010-1516-y, arXiv:1010.1667
[Hei08] G. Heinrich Sector Decomposition, 2008, Int.J.Mod.Phys.A23, doi:10.1142/S0217751X08040263, arXiv:0803.4177

```
a
pySecDec.algebra,15
d
pySecDec.decomposition, 22
pySecDec.decomposition.geometric,24
pySecDec.decomposition.iterative, 23
e
pySecDec.expansion, 32
|
pySecDec.loop_integral,27
m
pySecDec.misc,26
S
pySecDec.subtraction, 31
```


A

adjugate() (in module pySecDec.misc), 26
all_pairs() (in module pySecDec.misc), 26
argsort_2D_array() (in module pySecDec.misc), 26 argsort_ND_array() (in module pySecDec.misc), 26 assert_degree_at_most_max_degree() (in module SecDec.misc), 26

B

becomes_zero_for() (pySecDec.algebra.Polynomial method), 19

C

cached_property() (in module pySecDec.misc), 26
Cheng_Wu() (in module SecDec.decomposition.geometric), 24
complete_representation() SecDec.decomposition.geometric.Polytope method), 24
convex_hull() (in module pySecDec.decomposition.geometric), 25
copy() (pySecDec.algebra.DerivativeTracker method), 15
copy() (pySecDec.algebra.ExponentiatedPolynomial method), 16
copy() (pySecDec.algebra.Function method), 16
copy() (pySecDec.algebra.Log method), 17
copy() (pySecDec.algebra.Polynomial method), 19
copy () (pySecDec.algebra.Pow method), 20
copy() (pySecDec.algebra.Product method), 20
copy() (pySecDec.algebra.ProductRule method), 21
$\operatorname{copy}()($ pySecDec.algebra.Sum method), 22

D

DerivativeTracker (class in pySecDec.algebra), 15
derive() (pySecDec.algebra.DerivativeTracker method), 15
derive() (pySecDec.algebra.ExponentiatedPolynomial method), 16
derive() (pySecDec.algebra.Function method), 17
derive() (pySecDec.algebra.Log method), 17
derive() (pySecDec.algebra.LogOfPolynomial method), 18
derive() (pySecDec.algebra.Polynomial method), 19
derive() (pySecDec.algebra.Pow method), 20
derive() (pySecDec.algebra.Product method), 20
derive() (pySecDec.algebra.ProductRule method), 21
derive() (pySecDec.algebra.Sum method), 22
$\operatorname{det}()$ (in module pySecDec.misc), 27
$\operatorname{doc}()$ (in module pySecDec.misc), 27

E

EndOfDecomposition, 23
expand_singular() (in module pySecDec.expansion), 32
expand_Taylor() (in module pySecDec.expansion), 32
ExponentiatedPolynomial (class in pySecDec.algebra), 16
Expression() (in module pySecDec.algebra), 16

F

from_expression() (pySecDec.algebra.LogOfPolynomial static method), 18
from_expression() (pySecDec.algebra.Polynomial static method), 19
Function (class in pySecDec.algebra), 16

G

geometric_decomposition() (in module pySecDec.decomposition.geometric), 25

H

has_constant_term() (pySecDec.algebra.Polynomial method), 19
hide() (in module pySecDec.decomposition), 22
I
integrate_pole_part() (in module pySecDec.subtraction), 31
iteration_step() (in module pySecDec.decomposition.iterative), 23
iterative_decomposition() (in module pySecDec.decomposition.iterative), 23

Log (class in pySecDec.algebra), 17

LogOfPolynomial (class in pySecDec.algebra), 17
LoopIntegral (class in pySecDec.loop_integral), 27
LoopIntegralFromGraph (class in
SecDec.loop_integral), 28
LoopIntegralFromPropagators (class in SecDec.loop_integral), 29

M

missing() (in module pySecDec.misc), 27

P

Polynomial (class in pySecDec.algebra), 18
Polytope (class in pySecDec.decomposition.geometric), 24
Pow (class in pySecDec.algebra), 19
powerset() (in module pySecDec.misc), 27
primary_decomposition() (in module py-
SecDec.decomposition.iterative), 23
primary_decomposition_polynomial() (in module py-
SecDec.decomposition.iterative), 23
Product (class in pySecDec.algebra), 20
ProductRule (class in pySecDec.algebra), 21
pySecDec.algebra (module), 15
pySecDec.decomposition (module), 22
pySecDec.decomposition.geometric (module), 24
pySecDec.decomposition.iterative (module), 23
pySecDec.expansion (module), 32
pySecDec.loop_integral (module), 27
pySecDec.misc (module), 26
pySecDec.subtraction (module), 31

R

remap_parameters() (in module pySecDec.decomposition.iterative), 23
replace() (pySecDec.algebra.DerivativeTracker method), 15
replace() (pySecDec.algebra.Function method), 17
replace() (pySecDec.algebra.Log method), 17
replace() (pySecDec.algebra.Polynomial method), 19
replace() (pySecDec.algebra.Pow method), 20
replace() (pySecDec.algebra.Product method), 20
replace() (pySecDec.algebra.ProductRule method), 21
replace() (pySecDec.algebra.Sum method), 22

S

Sector (class in pySecDec.decomposition), 22
simplify() (pySecDec.algebra.DerivativeTracker method), 15
simplify() (pySecDec.algebra.ExponentiatedPolynomial method), 16
simplify() (pySecDec.algebra.Function method), 17
simplify() (pySecDec.algebra.Log method), 17
simplify() (pySecDec.algebra.LogOfPolynomial method), 18

