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An Apology

(First Half) Apology to Theorists:  

Talk will be slow, basic and will skip a lot of very important details and 
steps 

  

(Second Half) Apology to Experimentalists: 

Talk will get technical 

Don’t worry at the end I’ll introduce a tool that handles all the 
book-keeping.
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Content
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Part 1 
• From Cross-sections to Amplitudes 

• Feynman Rules 

• Loops ↔ Integrals 

• Dimensional Regularisation 

Part 2 
• Feynman Parameters 

• Graph Polynomials 

• Sector Decomposition 

Part 3 
• SecDec Demo (Implements all of the above)



Schematics

4

Total CS Order

�F = �

(0)
F + �

(1)
F + . . .

�

(0)
F =

X

i,j

Z 1

0
dxi

Z 1

0
dxjfi(xi)fj(xj)

Z

m
d�̂(0)

m

�

(1)
F =

X

i,j

Z 1

0
dxi

Z 1

0
dxjfi(xi)fj(xj)

Z

m
d�̂(1)

m +

Z

m+1
d�̂(0)

m+1

�

Final State



Schematics

4

Total CS Order

�F = �

(0)
F + �

(1)
F + . . .

�

(0)
F =

X

i,j

Z 1

0
dxi

Z 1

0
dxjfi(xi)fj(xj)

Z

m
d�̂(0)

m

�

(1)
F =

X

i,j

Z 1

0
dxi

Z 1

0
dxjfi(xi)fj(xj)

Z

m
d�̂(1)

m +

Z

m+1
d�̂(0)

m+1

�

PDFs

# legs

(Differential) 
Partonic CS

Phase Space Integral 

Final State



Schematics

4

Total CS Order

�F = �

(0)
F + �

(1)
F + . . .

�

(0)
F =

X

i,j

Z 1

0
dxi

Z 1

0
dxjfi(xi)fj(xj)

Z

m
d�̂(0)

m

�

(1)
F =

X

i,j

Z 1

0
dxi

Z 1

0
dxjfi(xi)fj(xj)

Z

m
d�̂(1)

m +

Z

m+1
d�̂(0)

m+1

�

PDFs

# legs

(Differential) 
Partonic CS

Phase Space Integral 

``Virtuals’’ ``Reals’’

More LegsHigher Order

Final State



Schematics (II)
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(Differential) 
Partonic CS Phase Space Measure

d�̂(0)
m = d�mhM(0)

m M(0)†
m i

d�̂(0)
m+1 = d�m+1hM(0)

m+1M
(0)†
m+1i

d�̂(1)
m = d�mhM(1)

m M(0)†
m +M(1)†

m M(0)
m i

Average/Sum  
(Initial/Final) 
 Spin & Colour

Amplitude



Feynman rules allow us to compute an amplitude,      , as an 
expansion in the coupling,   : 

Feynman Rules
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Vertex (3-point) Vertex (4-point)

k k1
k3

k2 k2

k1

k4

k3Z 1

�1

d4k

(2⇡)4
1

(k2 �m2 + i�)

g�(4)(k1 + k2 + k3) g2�(4)(k1 + k2 + k3 + k4)

Propagator

Propagators increment # integrations, Vertices decrement

Corresponds to summing over intermediate states

Feynman diagram: `Glue’ these pictures together 
and `factor out’ a delta function for overall 
momentum conservation

M
g



Generally:                           , We define,     to be # loops

Loops & Integrals
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# Loops ≡ # Unconstrained Momenta ↔ # of Integrations

I = # internal lines, V = # vertices 

Count the number of unconstrained momenta and call this number L

LL = I � (V � 1)

I = 1 
V = 2 
L = 0

I = 2 
V = 2 
L = 1

I = 5 
V = 4 
L = 2

I = 6 
V = 4 
L = 

Overall momentum conservation
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Constructing Integrals

8

Finding all the integrals ⇒ compute the diagram 

Nevertheless, can see the denominator of integrals immediately:

(a)

(b)

Figure 1: Typical Feynman diagrams in the two loop contributions to gg → H with (a) a heavy fermion in the

loop, (b) a heavy scalar in the loop .

where p12 = p1 + p2, mt is the mass of the particle running in the loops and k and l are the loop momenta.

The reduction to master integrals is done using integration by part identities [30, 31] combined with

the Laporta algorithm [5] in [15, 16]. We found 17 master integrals, which are shown in Figure 3. It is

possible to choose a different basis of master integrals; the basis we choose is particularly convenient for

the method of differential equations.

The master integrals in the first two lines of Figure 3 are products of known one-loop integrals [17,19].

The master integrals in the third, fourth and fifth line in Figure 3 are non-factorizable. Integrals in the

third and fourth line were calculated already in [18]1 and [19, 21, 22]. respectively. The double triangle,

last diagram in the third line was calculated in [21–23]. Also the six propagators triangle - third diagram

in the last line of Figure 3 - has been calculated in [20].

3. Master integrals

We computed all master integrals using the differential equation method [11,32–36]. The natural variable

to express the results is

x =

√
1 − τ − 1

√
1 − τ + 1

+ iε where τ =
4mt

2

s
, (3.1)

1Our results fully agree with the results quoted in this reference taken from the electronic file in

http://pheno.physik.uni-freiburg.de/bonciani/. The printed version contains several typographical mistakes.

– 3 –
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Computing Integrals
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There are many ways out of this problem! 
Note: If measure was         then for            this integral would be finite, 
this observation led to Dimensional Regularisation 

Aside: Divergence from                , called an ultraviolet (UV) divergence

k
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This integral 
is divergent!
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Dimensional Regularisation
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Dim. Reg. is the current ``standard’’ in perturbation theory. 

Key Ideas:  
• Treat number of space-time dimensions 
• Reformulate entire QFT in     dimensions (start from    ) 
• Use           to regulate UV, use            to regulate infrared (IR) 
• Physical observables for           are obtained by             (analytic 

continuation) 

For this to be consistent we require (1) uniqueness, (2) existence and 
we need to know (3) properties (linearity, scaling, translation invar.)

't Hooft, Veltman 72

Recommended: J. Collins, Renormalization

(D = 4� 2✏) 2 C
D L

D < 4 D > 4

D = 4 D ! 4

not always 
easy (�5)

See textbook



Computing Integrals (Revisited)
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Our problem is solved! How do we do more complicated integrals?

k

r2 = y(m2 � i�)Substitute:
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Part 2
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There are many ways of computing Feynman integrals!  
What follows is one specific approach.



Conventions
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Loop integral: 

Propagator:

L loops

N propagators

Loop 
momenta

External 
momenta

Pj({k}, {p},m2
j ) = (q2j �m2

j + i�)

Mass

Linear combination of loop/
external momenta

Important: +

⇥
dDkl

⇤
=

µ4�D

i⇡
D
2

dDkl

G =

Z LY

l=1

⇥
dDkl

⇤ 1
QN

j=1 P
⌫j

j ({k}, {p},m2
j )



Feynman  Parameterization
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Previous integral was easy due to spherical symmetry! Feynman  
parameterization is one way to cast all loop integrals into this form. 

Notice that: 

Or more generally: 

1

AB
=

Z 1

0
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[uA+ (1� u)B]2

1
QN
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⌫j

j
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NY
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Product Sum
N⌫ = ⌫1 + . . .+ ⌫N

Feynman Parameters



Feynman  Parameterization (II)
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Feynman parameterizing our loop integral: 

G =

Z 1

�1

LY

l=1

⇥
dDkl

⇤ 1
QN

j=1 P
⌫j

j

=
�(N⌫)QN
j=1 �(⌫j)

Z 1

0

NY
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dxjx
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4
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k

T
i Mijkj � 2

LX

j=1

k

T
j ·Qj + J + i�

3

5
�N⌫

From quadratic (in k) 
terms of propagators

Linear (in k) terms

Key Point: In this form we can shift k to eliminate linear terms 
(obtain spherical symmetry) then do the momentum integrals!



After integration over momenta we obtain: 

Graph Polynomials: 

We have exchanged    momentum integrals for     parameter integrals

Feynman  Parameterization (III)
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G = (�1)N⌫
�(N⌫ � LD/2)
QN

j=1 �(⌫j)

Z 1

0

NY
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dxj x

⌫j�1
j �(1�
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i=1

xi)
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FN⌫�LD/2(~x, sij)

Master Formula

L N

F(~x, sij) = det(M)

2

4
LX

i,j=1

QiM
�1
ij Qj � J � i�

3

5

U(~x) = det(M)1st Symanzik Polynomial:

2nd Symanzik Polynomial:

Maybe this looks complicated… but wait!



Graph Polynomials
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Properties: 
• Homogenous polynomials in the Feynman Parameters  

            is degree  

                  is degree 

•          and                 are linear in each Feynman Parameter

F(~x, sij)

U(~x) L

L+ 1

U(~x)

                and          can be constructed graphicallyF0(~x, sij) U(~x)

F(~x, sij) = F0(~x, sij) + U(~x)
PN

i=1 xim
2
i

F0(~x, sij)

Internal masses

We will follow: Bogner, Weinzierl 10



Constructing U
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Draw graph, label edges with Feynman Parameters 

Rules for         : 
1. Delete    edges all possible ways 

2. Throw away disconnected graphs or graphs with 

3. Sum monomials of Feynman parameters of deleted edges

U(~x)
L

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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L 6= 0
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Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
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Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
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F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2
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)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

x1

x2 x3

x4

x5

F0 = �p

2
x1x2x3

p

T1

T2

p



Constructing F

19

Rules for                : 
1. Delete          edges all possible ways 

2. Take only graphs with 2 connected components (T1, T2) and  

3. Sum F.P. monomials multiplied by:  

4. (For               add the internal mass terms)

F0(~x, sij)

L+ 1

L = 0

�sij = �(
X

k

qk)
2

Momenta flowing 
through cut lines 
from T1 → T2

F(~x, sij)

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(
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µ2

)
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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F0(~x, sij)

L+ 1

L = 0

�sij = �(
X

k

qk)
2

Momenta flowing 
through cut lines 
from T1 → T2

F(~x, sij)

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Rules for                : 
1. Delete          edges all possible ways 

2. Take only graphs with 2 connected components (T1, T2) and  

3. Sum F.P. monomials multiplied by:  

4. (For               add the internal mass terms)

F0(~x, sij)

L+ 1

L = 0

�sij = �(
X

k

qk)
2

Momenta flowing 
through cut lines 
from T1 → T2

F(~x, sij)
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Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

�p

2
x1x2x4

p

T1

T2

p



Divergences
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From the master formula, 3 possibilities for poles in    to arise: 

1. Overall                          diverges (single UV pole) 

2.          vanishes for some           and has negative exponent (UV sub-
divergences) 

3.                vanishes on the boundary and has negative exponent (IR 
divergences) 

Outside the Euclidean region (              ) there is a further possibility:  

4.                vanishes inside the integration region (May give: Landau 
singularity which is either a normal or anomalous threshold) 

Aside: If only condition 1 leads to a divergence the integral is Quasi-finite

�(N⌫ � LD/2)

U(~x) x = 0

F(~x, sij)

F(~x, sij)

✏

8sij < 0

Not discussed here (can be handled by SecDec: contourdef=True)
See: Soper 00; Borowka 14



Sector Decomposition
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We are now faced with integrals of the form: 

Which may contain overlapping singularities which appear when 
several              simultaneously 

Sector decomposition maps each integral into integrals of the form: 

Polynomials in F.P

Powers depending on ✏
Gi =

Z
1

0

0

@
N�1Y

j=1

dxjx
⌫j�1

j

1

A Ui(~x)expoU(✏)

Fi(~x, sij)expoF(✏)

Gik =

Z
1

0

0

@
N�1Y

j=1

dxjx
aj�bj✏
j

1

A Uik(~x)expoU(✏)

Fik(~x, sij)expoF(✏)

Uik(~x) = 1 + u(~x)

Fik(~x) = �s0 + f(~x)  have no constant termu(~x), f(~x)

Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

xj ! 0

Singularity structure can be read off



Sector Decomposition (II)

22

One technique Iterated Sector Decomposition repeat: 

If this procedure terminates depends on order of decomposition steps 

An alternative strategy Geometric Sector Decomposition always 
terminates; both strategies are implemented in SecDec.
Kaneko, Ueda 10; See also: Bogner, Weinzierl 08; Smirnov, Tentyukov 09

Binoth, Heinrich 00 

Overlapping singularity for x1, x2 ! 0

Singularities factorised

Z 1

0
dx1

Z 1

0
dx2

1

(x1 + x2)2+✏

=

Z 1

0
dx1

Z 1

0
dx2

1

(x1 + x2)2+✏

(✓(x1 � x2) + ✓(x2 � x1))

=

Z 1

0
dx1

Z
x1

0
dx2

1

(x1 + x2)2+✏

+

Z 1

0
dx2

Z
x2

0
dx1

1

(x1 + x2)2+✏

=

Z 1

0
dx1

Z 1

0
dt2

x1

(x1 + x1t2)2+✏

+

Z 1

0
dx2

Z 1

0
dt1

x2

(x2t1 + x2)2+✏

=

Z 1

0
dx1

Z 1

0
dt2

x

�1�✏

1

(1 + t2)2+✏

+

Z 1

0
dx2

Z 1

0
dt1

x

�1�✏

2

(t1 + 1)2+✏



Extraction
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Consider a Sector Decomposed integral (simple case             ): 

Key Point: Sector Decomposed integrals can be easily 
expanded in   and numerically integrated!✏

a = �1
Z 1

0
dxx�1�b✏

f(x)

=

Z 1

0
dxx�1�b✏ [f(x)� f(0) + f(0)]

=

Z 1

0
dxx�1�b✏

f(0) +

Z 1

0
dxx�1�b✏ [f(x)� f(0)]

=
f(0)

�b✏

+

Z 1

0
dxx�b✏


f(x)� f(0)

x

�
Finite

Poles

f(0) 6= 0

f(0)

By Definition:

finite



Demo
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Part 3



Warning
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1. F.P representation can sometimes obscure properties of integrals, 
can calculate the 2-loop propagator type integral to all orders in   
analytically but this was not obvious from the F.P representation 

2. Sector Decomposition itself can make the analytical structure of 
integrals more complicated (by introducing spurious 
transcendental functions) 

Last but not least: 
3. SecDec integrates functions numerically - this can be slow.  

But: can compute complicated (unknown) multi-scale integrals 
automatically often with reasonable wall time & provides an 
automated cross-check for other methods

✏

von Manteuffel, Schabinger, Zhu 12; von Manteuffel, Panzer, Schabinger 14



SecDec
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SecDec (https://secdec.hepforge.org)

Evaluate Dimensionally regulated parameter integrals numerically

Many examples in directory: loop/demos

Supports (within reason): 
• Arbitrary Loops & Legs 
• Numerators, Inverse propagators, ``Dots’’ 
• Euclidean & Physical Kinematics 
• Linear Propagators 
• Arbitrary (Complex) Masses/ Off-shellness 
• … (General parameter integrals, see: general/demos)

Collaboration: Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke

I did not speak about this

https://secdec.hepforge.org


Other public programs which implement Sector Decomposition:

Also…
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FIESTA 
(http://science.sander.su/FIESTA.htm)

sector_decomposition + CSectors
(http://wwwthep.physik.uni-mainz.de/

~stefanw/sector_decomposition)

Smirnov, Tentyukov

Bogner, Weinzierl; Gluza, Kajda, Riemann, Yundin

http://science.sander.su/FIESTA.htm
http://wwwthep.physik.uni-mainz.de/~stefanw/sector_decomposition


Installation
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Dependencies: 
• Mathematica 7+ 
• Perl, C++ Compiler 
• (Optional) For Geometric Decomposition: Normaliz 
• (Included) Cuba, Bases, CQUAD 

Installation: 
tar -xzvf SecDec-3.0.8.tar.gz
cd SecDec-3.0.8
make
(make check)

Bruns, Ichim, Roemer, Soeger 

Hahn; Kawabata; Gonnet



Example 1: box_1L
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p1

p2 p3

p4

m

Fig. 4. The one-loop box example, with p1 being an o↵-shell leg. Massless propaga-
tors and light-like legs are shown as dashed lines.

The overall time to obtain results for the two kinematic points calculated in
this example was 41 seconds.

5.2 Two-loop triangle

The example 2 triangle 2L (denoted by P126 in version 2) is a two-loop
three-point function containing a massive triangle loop, see Fig. 5. Analytical
results for this diagram can be found e.g. in Refs. [60,61], a threshold scan is
given in Ref. [2].

1

2
3

4

5

Fig. 5. The graph P126, containing a massive triangle loop.

The overall time taken by this example was 144 seconds.

5.3 Two-loop non-planar box with internal masses

This example is contained in the folder 3 nonplanarbox 2L.

It is a 7-propagator non-planar two-loop box integral where all propagators
are massive, using m1 = m2 = m5 = m6 = m, m3 = m4 = m7 = M ,
p

2
1 = p

2
2 = p

2
3 = p

2
4 = m

2. The labelling is as shown in Fig. 6.

Numerical results for this integral have first been calculated in Ref. [62] using
a method based on extrapolation in the i� parameter. We give results for
m = 50,M = 90, s23 = �104. A scan over the invariant s12 can be found in
Ref. [2].

The overall time taken by this example was 186 seconds.
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1-loop Box

Scalar Products:

Propagators:

p1 · p1 = s1 p2 · p2 = 0 p3 · p3 = 0

p1 · p2 = s/2� s1/2 p2 · p3 = t/2 p3 · p4 = s/2

p1 · p3 = �t/2� s/2 p2 · p4 = s1/2� t/2� s/2 p4 · p4 = 0

p1 · p4 = t/2� s1/2

k1

k1 + p1

k1 + p1 + p2

k1 + p1 + p2 + p3

(k1)
2

(k1 + p1)
2 �m2

(k1 + p1 + p2)
2

(k1 + p1 + p2 + p3)
2



Massless 3-loop Form Factor

Example 2: ff_3L
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Propagators:

Scalar Products:

INT[“A3diminc2”, 7, 758, 10, 0, {0, 2, 2, 0, 2, 1, 1, 1, 0, 1, 0, 0}] =

(6−2ϵ)

INT[“B3”, 7, 1722, 7, 0, {0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0}] =

(4−2ϵ)

INT[“C3diminc4”, 8, 2959, 16, 0, {2, 2, 3, 1, 0, 0, 0, 2, 1, 2, 0, 3}] =

(8−2ϵ)

INT[“B3”, 8, 2750, 8, 0, {0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1}] =

(4−2ϵ)

INT[“B3diminc2”, 8, 1662, 10, 0, {0, 1, 1, 2, 1, 1, 1, 0, 0, 2, 1, 0}] =

(6−2ϵ)

INT[“A3diminc2”, 9, 1790, 10, 0, {0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0}] =

(6−2ϵ)

INT[“B3diminc2”, 9, 1790, 10, 0, {0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0}] =

(6−2ϵ)

INT[“C3diminc2”, 9, 1015, 10, 0, {1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0}] =

(6−2ϵ)

3

k2

k1 � k2 k1 � k3

k1 � k2 � k3

k1 � p1 � p2

k3 � p1

k2 � p1 � p2

p1

p2

p3 = p1 + p2

p1 · p1 = 0 p2 · p2 = 0 p3 · p3 = s

p1 · p2 = s/2 p2 · p3 = �s/2 p1 · p3 = �s/2

von Manteuffel, Panzer, Schabinger 15

(k2)
2

(k1 � k2)
2

(k1 � k3)
2

(k1 � k2 � k3)
2

(k1 � p1 � p2)
2

(k2 � p1 � p2)
2

(k3 � p1)
2



Example 2: ff_3L (II)
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Alternatively, rather than propagators we can specify an adjacency list

Adjacency List:

{  {0,{1,2}},  {0,{1,4}},  {0,{1,5}},  {0,{2,4}},  {0,{2,5}},  {0,{3,4}},  {0,{3,5}}  }

Mass of edge

Note: Vertices connected 
to external momenta must 
be numbered correctly!

Aside: Integral is finite, technically do not need Sector Decomposition

INT[“A3diminc2”, 7, 758, 10, 0, {0, 2, 2, 0, 2, 1, 1, 1, 0, 1, 0, 0}] =

(6−2ϵ)

INT[“B3”, 7, 1722, 7, 0, {0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0}] =

(4−2ϵ)

INT[“C3diminc4”, 8, 2959, 16, 0, {2, 2, 3, 1, 0, 0, 0, 2, 1, 2, 0, 3}] =

(8−2ϵ)

INT[“B3”, 8, 2750, 8, 0, {0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1}] =

(4−2ϵ)

INT[“B3diminc2”, 8, 1662, 10, 0, {0, 1, 1, 2, 1, 1, 1, 0, 0, 2, 1, 0}] =

(6−2ϵ)

INT[“A3diminc2”, 9, 1790, 10, 0, {0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0}] =

(6−2ϵ)

INT[“B3diminc2”, 9, 1790, 10, 0, {0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0}] =

(6−2ϵ)

INT[“C3diminc2”, 9, 1015, 10, 0, {1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0}] =

(6−2ϵ)

3

3

1

2

4

5

p1

p2

p3 = p1 + p2

ExternalMomenta = {p1,p2,p3}; 
Position:                    1    2   3



Thank you for listening!
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