Introduction to SecDec

$\overline{\text { Max-Planck-Institut für Physik }}$ (Werner-Heisenberg-Institut)

Stephen Jones

With SecDec collaboration:
S. Borowka, G. Heinrich, S. Jahn, M. Kerner, J. Schlenk, T. Zirke

An Apology

(First Half) Apology to Theorists:
Talk will be slow, basic and will skip a lot of very important details and steps
(Second Half) Apology to Experimentalists:
Talk will get technical

Don't worry at the end I'll introduce a tool that handles all the book-keeping.

Content

Part 1

- From Cross-sections to Amplitudes
- Feynman Rules
- Loops \leftrightarrow Integrals
- Dimensional Regularisation

Part 2

- Feynman Parameters
- Graph Polynomials
- Sector Decomposition

Part 3

- SecDec Demo (Implements all of the above)

Schematics

Total CS Order

$$
\stackrel{\downarrow}{\sigma_{F}}=\sigma_{F}^{(0)}+\sigma_{F}^{(1)}+\ldots
$$

Final State

$$
\begin{aligned}
& \sigma_{F}^{(0)}=\sum_{i, j} \int_{0}^{1} \mathrm{~d} x_{i} \int_{0}^{1} \mathrm{~d} x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \int_{m} \mathrm{~d} \hat{\sigma}_{m}^{(0)} \\
& \sigma_{F}^{(1)}=\sum_{i, j} \int_{0}^{1} \mathrm{~d} x_{i} \int_{0}^{1} \mathrm{~d} x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right)\left[\int_{m} \mathrm{~d} \hat{\sigma}_{m}^{(1)}+\int_{m+1} \mathrm{~d} \hat{\sigma}_{m+1}^{(0)}\right]
\end{aligned}
$$

Schematics

Total CS Order

$$
\stackrel{\downarrow}{\sigma_{F}=\sigma_{F}^{(0)}+\sigma_{F}^{(1)}+\ldots .}
$$

Phase Space Integral
PDFs
Final State

$$
\begin{aligned}
& \sigma_{F}^{(0)}=\sum_{i, j} \int_{0}^{1} \mathrm{~d} x_{i} \int_{0}^{1} \mathrm{~d} x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \int_{m} \mathrm{~d} \hat{\sigma}_{m}^{(0)} \longleftarrow \text { \# legs } \\
& \sigma_{F}^{(1)}=\sum_{i, j} \int_{0}^{1} \mathrm{~d} x_{i} \int_{0}^{1} \mathrm{~d} x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right)\left[\int_{m} \mathrm{~d} \hat{\sigma}_{m}^{(1)}+\int_{m+1} \mathrm{~d} \hat{\sigma}_{m+1}^{(0)}\right]
\end{aligned}
$$

Schematics

Total CS Order

$$
\frac{\downarrow}{\sigma_{F}}=\frac{\downarrow}{\sigma_{F}^{(0)}}+\sigma_{F}^{(1)}+\ldots
$$

Phase Space Integral
(Differential)
Final State

$$
\sigma_{F}^{(0)}=\sum_{i, j} \int_{0}^{1} \mathrm{~d} x_{i} \int_{0}^{1} \mathrm{~d} x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right) \int_{m} \mathrm{~d} \hat{\sigma}_{m}^{(0)} \longleftarrow \text { \# legs }
$$

Higher Order

$$
\sigma_{F}^{(1)}=\sum_{i, j} \int_{0}^{1} \mathrm{~d} x_{i} \int_{0}^{1} \mathrm{~d} x_{j} f_{i}\left(x_{i}\right) f_{j}\left(x_{j}\right)\left[\int_{m} \mathrm{~d} \hat{\sigma}_{m}^{(1)}+\int_{m+1} \mathrm{~d} \hat{\sigma}_{m+1}^{(0)}\right]
$$

"Virtuals" "Reals"

Schematics (II)

(Differential)

Partonic CS

Phase Space Measure

$$
\left.\begin{array}{cl}
\downarrow \\
\mathrm{d} \hat{\sigma}_{m}^{(0)} & =\mathrm{d} \Phi_{m}\left\langle\mathcal{M}_{m}^{(0)} \mathcal{M}_{m}^{(0) \dagger}\right\rangle \longleftarrow
\end{array} \begin{array}{c}
\text { Average/Sum } \\
\text { (Initial/Final) } \\
\text { Spin \& Colour }
\end{array}\right)
$$

Amplitude

Feynman Rules

Feynman rules allow us to compute an amplitude, \mathcal{M}, as an expansion in the coupling, g :

Corresponds to summing over intermediate states
Propagators increment \# integrations, Vertices decrement
Feynman diagram: 'Glue' these pictures together and 'factor out' a delta function for overall momentum conservation

Loops \& Integrals

I = \# internal lines, V = \# vertices
Count the number of unconstrained momenta and call this number L

$$
\begin{aligned}
& I=1 \\
& V=2 \\
& L=0
\end{aligned}
$$

$$
\begin{aligned}
& I=2 \\
& V=2 \\
& L=1
\end{aligned}
$$

$$
\begin{aligned}
& I=5 \\
& V=4 \\
& L=2
\end{aligned}
$$

Overall momentum conservation

Generally: $L=I-(V-1)$, We define, L to be \# loops
\# Loops \equiv \# Unconstrained Momenta \leftrightarrow \# of Integrations

Loops \& Integrals

I = \# internal lines, V = \# vertices
Count the number of unconstrained momenta and call this number L

$$
\begin{aligned}
& I=1 \\
& V=2 \\
& L=0
\end{aligned}
$$

$$
\begin{aligned}
& I=2 \\
& V=2 \\
& L=1
\end{aligned}
$$

Overall momentum conservation
Generally: $L=I-(V-1)$, We define, L to be \# loops
\# Loops \equiv \# Unconstrained Momenta \leftrightarrow \# of Integrations

Constructing Integrals

Finding all the integrals \Rightarrow compute the diagram
Nevertheless, can see the denominator of integrals immediately:

Computing Integrals

$$
\begin{array}{lll}
& \sim \int_{-\infty}^{\infty} \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m^{2}+i \delta\right)} & \\
& =\frac{-i}{(2 \pi)^{4}} \int \mathrm{~d} \Omega_{3} \int_{0}^{\infty} \mathrm{d} r r^{3} \frac{1}{\left(r^{2}+m^{2}-i \delta\right)} & \text { Problem: } \\
& =\frac{-i}{(2 \pi)^{4}} \frac{2 \pi^{2}}{\Gamma(2)} \int_{0}^{\infty} \mathrm{d} r r^{3} \frac{1}{\left(r^{2}+m^{2}-i \delta\right)} \longleftarrow & \text { This integr } \\
& \left.\sim \frac{-i}{(2 \pi)^{4}} \frac{2 \pi^{2}}{\Gamma(2)} \frac{1}{2} \frac{1}{2} r^{2}-m^{2} \ln \left(r^{2}+m^{2}\right)\right]_{0}^{\infty} \longleftarrow & \text { nonsense }
\end{array}
$$

There are many ways out of this problem!
Note: If measure was $\mathrm{d}^{D} k$ then for $D<2$ this integral would be finite, this observation led to Dimensional Regularisation

Aside: Divergence from $\left|k^{\mu}\right| \rightarrow \infty$, called an ultraviolet (UV) divergence

Dimensional Regularisation

Dim. Reg. is the current "standard" in perturbation theory.

Key Ideas:

- Treat number of space-time dimensions $(D=4-2 \epsilon) \in \mathbb{C}$
- Reformulate entire QFT in D dimensions (start from \mathcal{L})
- Use $D<4$ to regulate UV , use $D>4$ to regulate infrared (IR)
- Physical observables for $D=4$ are obtained by $D \rightarrow 4$ (analytic continuation)
't Hooft, Veltman 72
not always
easy $\left(\gamma_{5}\right)$

For this to be consistent we require (1) uniqueness, (2) existence and we need to know (3) properties (linearity, scaling, translation invar.)

Computing Integrals (Revisited)

$$
\begin{aligned}
\sim I & =\int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{1}{\left(k^{2}-m^{2}+i \delta\right)} \\
& =\frac{-i}{(2 \pi)^{D}} \int \mathrm{~d} \Omega_{D-1} \int_{0}^{\infty} \mathrm{d} r r^{D-1} \frac{1}{\left(r^{2}+m^{2}-i \delta\right)} \\
& =\frac{-i}{(2 \pi)^{D}} \frac{2 \pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)} \int_{0}^{\infty} \mathrm{d} r r^{D-1} \frac{1}{\left(r^{2}+m^{2}-i \delta\right)}
\end{aligned}
$$

Substitute: $r^{2}=y\left(m^{2}-i \delta\right)$

$$
\begin{aligned}
I & =\frac{-i}{(2 \pi)^{D}} \frac{2 \pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right.} \frac{1}{2}\left(m^{2}-i \delta\right)^{\frac{D}{2}-1} \int_{0}^{\infty} \mathrm{d} y y^{\frac{D}{2}-1}(y+1)^{-1} \\
& =\frac{-i}{(2 \pi)^{D}} \frac{2 \pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)} \frac{1}{2}\left(m^{2}-i \delta\right)^{\frac{D}{2}-1} \mathrm{~B}\left(\frac{D}{2}, 1-\frac{D}{2}\right) \\
& =\frac{-i}{(2 \pi)^{D}} \frac{2 \pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)} \frac{1}{2}\left(m^{2}-i \delta\right)^{\frac{D}{2}-1} \frac{\Gamma\left(\frac{D}{2}\right) \Gamma\left(1-\frac{D}{2}\right)}{\Gamma(1)}
\end{aligned}
$$

Euler Beta Function

$$
\operatorname{Re}(D / 2)>0
$$

$$
\operatorname{Re}(1-D / 2)>0
$$

Our problem is solved! How do we do more complicated integrals?

There are many ways of computing Feynman integrals! What follows is one specific approach.

Conventions

Loop integral:

$$
\begin{gathered}
G=\int \prod_{l=1}^{L}\left[\mathrm{~d}^{D} k_{l}\right] \frac{1}{\prod_{j=1}^{N} P_{j}^{\nu_{j}}\left(\{k\},\{p\}, m_{j}^{2}\right)} \\
\text { N propagators }
\end{gathered}
$$

$$
\left[\mathrm{d}^{D} k_{l}\right]=\frac{\mu^{4-D}}{i \pi^{\frac{D}{2}}} \mathrm{~d}^{D} k_{l}
$$

Propagator:

4
Loop momenta momenta external momenta

Feynman Parameterization

Previous integral was easy due to spherical symmetry! Feynman parameterization is one way to cast all loop integrals into this form.
Notice that:

$$
\frac{1}{A B}=\int_{0}^{1} \frac{d u}{[u A+(1-u) B]^{2}}
$$

Or more generally:
$\frac{1}{\prod_{j=1}^{N} P_{j}^{\nu_{j}}}=\frac{\Gamma\left(N_{\nu}\right)}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \int_{0}^{\infty} \prod_{j=1}^{N} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{1}{\left[\sum_{j=1}^{N} x_{j} P_{j}\right]^{N_{\nu}}}$
Froduct
Feynman Parameters
Sum
$N_{\nu}=\nu_{1}+\ldots+\nu_{N}$

Feynman Parameterization (II)

Feynman parameterizing our loop integral:
$G=\int_{-\infty}^{\infty} \prod_{l=1}^{L}\left[\mathrm{~d}^{D} k_{l}\right] \frac{1}{\prod_{j=1}^{N} P_{j}^{\nu_{j}}}=\frac{\Gamma\left(N_{\nu}\right)}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \int_{0}^{\infty} \prod_{j=1}^{N} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{i=1}^{N} x_{i}\right)$

$$
\times \int_{-\infty}^{\infty} \prod_{l=1}^{L}\left[\mathrm{~d}^{D} k_{l}\right]\left[\sum_{i, j=1}^{L} k_{i}^{T} M_{i j} k_{j}-2 \sum_{j=1}^{L} k_{j}^{T} \cdot Q_{j}+J+i \delta\right]^{-N_{\nu}}
$$

From quadratic (in k) Linear (in k) terms terms of propagators

Key Point: In this form we can shift k to eliminate linear terms (obtain spherical symmetry) then do the momentum integrals!

Feynman Parameterization (III)

After integration over momenta we obtain:

Master Formula

$$
G=(-1)^{N_{\nu}} \frac{\Gamma\left(N_{\nu}-L D / 2\right)}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \int_{0}^{\infty} \prod_{j=1}^{N} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{\mathcal{U}^{N_{\nu}-(L+1) D / 2}(\vec{x})}{\mathcal{F}^{N_{\nu}-L D / 2}\left(\vec{x}, s_{i j}\right)}
$$

Graph Polynomials:
1st Symanzik Polynomial: $\quad \mathcal{U}(\vec{x})=\operatorname{det}(M)$
2nd Symanzik Polynomial: $\mathcal{F}\left(\vec{x}, s_{i j}\right)=\operatorname{det}(M)\left[\sum_{i, j=1}^{L} Q_{i} M_{i j}^{-1} Q_{j}-J-i \delta\right]$
We have exchanged L momentum integrals for N parameter integrals
Maybe this looks complicated... but wait!

Graph Polynomials

Properties:

- Homogenous polynomials in the Feynman Parameters $\mathcal{U}(\vec{x})$ is degree L
$\mathcal{F}\left(\vec{x}, s_{i j}\right)$ is degree $L+1$ $\mathcal{F}\left(\vec{x}, s_{i j}\right)=\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)+\mathcal{U}(\vec{x}) \sum_{i=1}^{N} x_{i} m_{i}^{2} \longleftarrow$ Internal masses
- $\mathcal{U}(\vec{x})$ and $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$ are linear in each Feynman Parameter

$\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$ and $\mathcal{U}(\vec{x})$ can be constructed graphically

We will follow: Bogner, Weinzierl 10

Constructing U

Draw graph, label edges with Feynman Parameters
Rules for $\mathcal{U}(\vec{x})$:

1. Delete L edges all possible ways

2. Throw away disconnected graphs or graphs with $L \neq 0$
3. Sum monomials of Feynman parameters of deleted edges

$\mathcal{U}(\vec{x})=$

Constructing U

Draw graph, label edges with Feynman Parameters Rules for $\mathcal{U}(\vec{x})$:

1. Delete L edges all possible ways

2. Throw away disconnected graphs or graphs with $L \neq 0$
3. Sum monomials of Feynman parameters of deleted edges

$\mathcal{U}(\vec{x})=$

Constructing U

Draw graph, label edges with Feynman Parameters
Rules for $\mathcal{U}(\vec{x})$:

1. Delete L edges all possible ways

2. Throw away disconnected graphs or graphs with $L \neq 0$
3. Sum monomials of Feynman parameters of deleted edges

Discon. Loop

$\mathcal{U}(\vec{x})=$

Constructing U

Draw graph, label edges with Feynman Parameters Rules for $\mathcal{U}(\vec{x})$:

1. Delete L edges all possible ways

2. Throw away disconnected graphs or graphs with $L \neq 0$
3. Sum monomials of Feynman parameters of deleted edges

Discon. Loop

$\mathcal{U}(\vec{x})=\quad+x_{1} x_{3}$

Constructing U

Draw graph, label edges with Feynman Parameters
Rules for $\mathcal{U}(\vec{x})$:

1. Delete L edges all possible ways

2. Throw away disconnected graphs or graphs with $L \neq 0$
3. Sum monomials of Feynman parameters of deleted edges

Constructing U

Draw graph, label edges with Feynman Parameters
Rules for $\mathcal{U}(\vec{x})$:

1. Delete L edges all possible ways

2. Throw away disconnected graphs or graphs with $L \neq 0$
3. Sum monomials of Feynman parameters of deleted edges

$\mathcal{U}(\vec{x})=$

$+x_{2} x_{4}$

Constructing F

Rules for $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$:

1. Delete $L+1$ edges all possible ways
2. Take only graphs with 2 connected components (T1, T2) and $L=0$
3. Sum F.P. monomials multiplied by: $-s_{i j}=-\left(\sum q_{k}\right)^{2}$ Momenta flowing
4. (For $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ add the internal mass terms)
 from T1 \rightarrow T2

$\mathcal{F}_{0}=-p^{2} x_{1} x_{2} x_{3}$

Constructing F

Rules for $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$:

1. Delete $L+1$ edges all possible ways
2. Take only graphs with 2 connected components (T1, T2) and $L=0$
3. Sum F.P. monomials multiplied by: $-s_{i j}=-\left(\sum q_{k}\right)^{2}$ Momenta flowing
4. (For $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ add the internal mass terms) through cut lines from T1 \rightarrow T2

Constructing F

Rules for $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$:

1. Delete $L+1$ edges all possible ways
2. Take only graphs with 2 connected components (T1, T2) and $L=0$
3. Sum F.P. monomials multiplied by: $-s_{i j}=-\left(\sum q_{k}\right)^{2}$ Momenta flowing
4. (For $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ add the internal mass terms)

$\mathcal{F}_{0}=-p^{2} x_{1} x_{2} x_{3} \quad-p^{2} x_{1} x_{2} x_{4}$
through cut lines from T1 \rightarrow T2

Constructing F

Rules for $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$:

1. Delete $L+1$ edges all possible ways
2. Take only graphs with 2 connected components (T1, T2) and $L=0$
3. Sum F.P. monomials multiplied by: $-s_{i j}=-\left(\sum q_{k}\right)^{2}$ Momenta flowing
4. (For $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ add the internal mass terms) through cut lines from T1 \rightarrow T2

$\mathcal{F}_{0}=-p^{2} x_{1} x_{2} x_{3} \quad-p^{2} x_{1} x_{2} x_{4}$

$-p^{2} x_{1} x_{2} x_{5}$

$-p^{2} x_{1} x_{3} x_{4}$

$-p^{2} x_{1} x_{3} x_{5}$

Constructing F

Rules for $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$:

1. Delete $L+1$ edges all possible ways
2. Take only graphs with 2 connected components (T1, T2) and $L=0$
3. Sum F.P. monomials multiplied by: $-s_{i j}=-\left(\sum q_{k}\right)^{2}$ Momenta flowing
4. (For $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ add the internal mass terms) through cut lines from T1 \rightarrow T2

$\mathcal{F}_{0}=-p^{2} x_{1} x_{2} x_{3}$

$-0^{2} x_{1} x_{4} x_{5}$

$-p^{2} x_{1} x_{2} x_{4}$

$-p^{2} x_{1} x_{2} x_{5}$

$-p^{2} x_{1} x_{3} x_{4}$

$-p^{2} x_{1} x_{3} x_{5}$

Constructing F

Rules for $\mathcal{F}_{0}\left(\vec{x}, s_{i j}\right)$:

1. Delete $L+1$ edges all possible ways
2. Take only graphs with 2 connected components (T1, T2) and $L=0$
3. Sum F.P. monomials multiplied by: $-s_{i j}=-\left(\sum_{k} q_{k}\right)^{2}$
4. (For $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ add the internal mass terms)

Momenta flowing through cut lines from T1 \rightarrow T2

$\mathcal{F}_{0}=-p^{2} x_{1} x_{2} x_{3}$

$-0^{2} x_{1} x_{4} x_{5}$

$-p^{2} x_{1} x_{2} x_{4}$

$-p^{2} x_{2} x_{3} x_{4}$

$-p^{2} x_{1} x_{2} x_{5}$

$-0^{2} x_{2} x_{3} x_{5}$

$-p^{2} x_{1} x_{3} x_{4}$

$-p^{2} x_{2} x_{4} x_{5}$

$-p^{2} x_{1} x_{3} x_{5}$

$-p^{2} x_{3} x_{4} x_{5}$

Divergences

From the master formula, 3 possibilities for poles in ϵ to arise:

1. Overall $\Gamma\left(N_{\nu}-L D / 2\right)$ diverges (single UV pole)
2. $\mathcal{U}(\vec{x})$ vanishes for some $x=0$ and has negative exponent (UV subdivergences)
3. $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ vanishes on the boundary and has negative exponent (IR divergences)

Outside the Euclidean region ($\forall s_{i j}<0$) there is a further possibility:
4. $\mathcal{F}\left(\vec{x}, s_{i j}\right)$ vanishes inside the integration region (May give: Landau singularity which is either a normal or anomalous threshold) \uparrow
Not discussed here (can be handled by SecDec: contourdef=True) See: Soper 00; Borowka 14

Aside: If only condition 1 leads to a divergence the integral is Quasi-finite

Sector Decomposition

We are now faced with integrals of the form:

$$
\begin{gathered}
G_{i}=\int_{0}^{1}\left(\prod_{j=1}^{N-1} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1}\right) \frac{\mathcal{U}_{i}(\vec{x})^{\operatorname{expou}(\epsilon)} \longleftarrow}{\mathcal{F}_{i}\left(\vec{x}, s_{i j}\right)^{\operatorname{expo\mathcal {F}(\epsilon)}}} \text { Powers depending on } \epsilon \\
\text { Polynomials in F.P }
\end{gathered}
$$

Which may contain overlapping singularities which appear when several $x_{j} \rightarrow 0$ simultaneously
Sector decomposition maps each integral into integrals of the form:

$$
G_{i k}=\int_{0}^{1}\left(\prod_{j=1}^{N-1} \mathrm{~d} x_{j} x_{j}^{a_{j}-b_{j} \epsilon}\right) \frac{\mathcal{U}_{i k}(\vec{x})^{\operatorname{expo} \mathcal{U}(\epsilon)}}{\mathcal{F}_{i k}\left(\vec{x}, s_{i j}\right)^{\operatorname{expo\mathcal {F}}(\epsilon)}}
$$

$\mathcal{U}_{i k}(\vec{x})=1+u(\vec{x})$
Singularity structure can be read off
$\mathcal{F}_{i k}(\vec{x})=-s_{0}+f(\vec{x}) \longleftrightarrow u(\vec{x}), f(\vec{x})$ have no constant term
Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

Sector Decomposition (II)

One technique Iterated Sector Decomposition repeat:

$$
\begin{aligned}
& \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}} \text { - Overlapping singularity for } x_{1}, x_{2} \rightarrow 0
\end{aligned} \begin{aligned}
& =\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}}\left(\theta\left(x_{1}-x_{2}\right)+\theta\left(x_{2}-x_{1}\right)\right) \\
& =\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{x_{1}} \mathrm{~d} x_{2} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} x_{2} \int_{0}^{x_{2}} \mathrm{~d} x_{1} \frac{1}{\left(x_{1}+x_{2}\right)^{2+\epsilon}} \\
& =\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} t_{2} \frac{x_{1}}{\left(x_{1}+x_{1} t_{2}\right)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} x_{2} \int_{0}^{1} \mathrm{~d} t_{1} \frac{x_{2}}{\left(x_{2} t_{1}+x_{2}\right)^{2+\epsilon}} \\
& =\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} t_{2} \frac{x_{1}^{-1-\epsilon}}{\left(1+t_{2}\right)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} x_{2} \int_{0}^{1} \mathrm{~d} t_{1} \frac{x_{2}^{-1-\epsilon} \longleftarrow \text { Singularities factorised }}{\left(t_{1}+1\right)^{2+\epsilon}}
\end{aligned}
$$

If this procedure terminates depends on order of decomposition steps
An alternative strategy Geometric Sector Decomposition always terminates; both strategies are implemented in SecDec.
Kaneko, Ueda 10; See also: Bogner, Weinzierl 08; Smirnov, Tentyukov 09

Extraction

Consider a Sector Decomposed integral (simple case $a=-1$):

$$
\begin{aligned}
& \int_{0}^{1} \mathrm{~d} x x^{-1-b \epsilon} f(x) \\
& =\int_{0}^{1} \mathrm{~d} x x^{-1-b \epsilon}[f(x)-f(0)+f(0)] \\
& =\int_{0}^{1} \mathrm{~d} x x^{-1-b \epsilon} f(0)+\int_{0}^{1} \mathrm{~d} x x^{-1-b \epsilon}[f(x)-f(0)] \\
& =\frac{f(0)}{-b \epsilon}+\int_{0}^{1} \mathrm{~d} x x^{-b \epsilon}\left[\frac{f(x)-f(0)}{x}\right] \longleftarrow \text { Finite } \\
& \text { Poles }
\end{aligned}
$$

By Definition:

$f(0) \neq 0$
$f(0)$ finite

Key Point: Sector Decomposed integrals can be easily expanded in ϵ and numerically integrated!

Demo

Warning

1. F.P representation can sometimes obscure properties of integrals, can calculate the 2-loop propagator type integral to all orders in ϵ analytically but this was not obvious from the F.P representation
2. Sector Decomposition itself can make the analytical structure of integrals more complicated (by introducing spurious transcendental functions)
von Manteuffel, Schabinger, Zhu 12; von Manteuffel, Panzer, Schabinger 14

Last but not least:

3. SecDec integrates functions numerically - this can be slow.

But: can compute complicated (unknown) multi-scale integrals automatically often with reasonable wall time \& provides an automated cross-check for other methods

SecDec (https://secdec.hepforge.org)

Evaluate Dimensionally regulated parameter integrals numerically
Collaboration: Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke
Many examples in directory: loop/demos
Supports (within reason):

- Arbitrary Loops \& Legs
- Numerators, Inverse propagators, "Dots"
- Euclidean \& Physical Kinematics \downarrow I did not speak about this
- Linear Propagators
- Arbitrary (Complex) Masses/ Off-shellness
- ... (General parameter integrals, see: general/demos)

Other public programs which implement Sector Decomposition:

FIESTA

(http://science.sander.su/FIESTA.htm)
Smirnov, Tentyukov
sector_decomposition + CSectors
(http://wwwthep.physik.uni-mainz.de/ ~stefanw/sector decomposition)

Bogner, Weinzierl; Gluza, Kajda, Riemann, Yundin

Installation

Dependencies:

- Mathematica 7+
- Perl, C++ Compiler
- (Optional) For Geometric Decomposition: Normaliz
- (Included) Cuba, Bases, CQUAD

Installation:
tar -xzvf SecDec-3.0.8.tar.gz
cd SecDec-3.0.8
make
(make check)

Example 1: box_1L

1-loop Box

Propagators:

$\left(k_{1}\right)^{2}$
$\left(k_{1}+p_{1}\right)^{2}-m^{2}$
$\left(k_{1}+p_{1}+p_{2}\right)^{2}$
$\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}$

Scalar Products:

$$
\begin{array}{lll}
p_{1} \cdot p_{1}=s_{1} & p_{2} \cdot p_{2}=0 & p_{3} \cdot p_{3}=0 \\
p_{1} \cdot p_{2}=s / 2-s_{1} / 2 & p_{2} \cdot p_{3}=t / 2 & p_{3} \cdot p_{4}=s / \\
p_{1} \cdot p_{3}=-t / 2-s / 2 & p_{2} \cdot p_{4}=s_{1} / 2-t / 2-s / 2 & p_{4} \cdot p_{4}=0 \\
p_{1} \cdot p_{4}=t / 2-s_{1} / 2 & &
\end{array}
$$

Example 2: ff_3L

Massless 3-loop Form Factor

Scalar Products:

$$
\begin{array}{ll}
p_{1} \cdot p_{1}=0 & p_{2} \cdot p_{2}=0 \\
p_{1} \cdot p_{2}=s / 2 & p_{2} \cdot p_{3}=-s / 2
\end{array}
$$

Propagators:

$\left(k_{2}\right)^{2}$
$\left(k_{1}-k_{2}\right)^{2}$
$\left(k_{1}-k_{3}\right)^{2}$
$\left(k_{1}-k_{2}-k_{3}\right)^{2}$
$\left(k_{1}-p_{1}-p_{2}\right)^{2}$
$\left(k_{2}-p_{1}-p_{2}\right)^{2}$
$\left(k_{3}-p_{1}\right)^{2}$

$$
p_{3} \cdot p_{3}=s
$$

$$
p_{1} \cdot p_{3}=-s / 2
$$

Example 2: ff_3L (II)

Alternatively, rather than propagators we can specify an adjacency list

Note: Vertices connected to external momenta must be numbered correctly!

ExternalMomenta $=\{p 1, p 2, p 3\}$; Position:

123

Mass of edge

Adjacency List:

$\{\{0,\{1,2\}\},\{0,\{1,4\}\},\{0,\{1,5\}\},\{0,\{2,4\}\},\{0,\{2,5\}\},\{0,\{3,4\}\},\{0,\{3,5\}\}\}$
Aside: Integral is finite, technically do not need Sector Decomposition

Thank you for listening!

