Computation of Master Integrals at Higher Orders

IMPRS EPP

Sophia Borowka

Max Planck Institute for Physics, Munich

Young Scientists Workshop 2012
Ringberg, July 24th 2012
http://secdec.hepforge.org

Outline

- Why are higher order corrections necessary?
- Constructing loop amplitudes from diagrams
- Analyzing divergences
- Analytic vs numerical approach
- SecDec program

The LHC Era has begun...

- We are probing energies which have never been reached at colliders before
- High experimental precision is possible due to high luminosities
- Precise theoretical predictions become necessary

Higgs Production Channels

Higgs Production in Gluon Fusion

Multi-dimensional parameter integrals need to be evaluated which can contain UV, soft and collinear singularities

- LO

(NLO in other processes)
- NLO

- NNLO

Higher Order Corrections to the Higgs Production

Harlander \& Kilgore '02

Anastasiou, Melnikov, Petriello '05

In some cases, higher order corrections can make a huge difference!

Master Integrals at Higher Loop Order

- Tiziano's talk: @l-loop all master integrals are known

- Two and more loops: master integrals need to be found!

Let's Build a House

Let's Build a House

Let's Build a House

And make all its columns massless

Let's Build a House

Construct the Integrand - U

- Find all connected I-tree graphs by cutting L lines, where L is the number of loops

Construct the Integrand - U

- Find all connected I-tree graphs by cutting L lines, where L is the number of loops

Construct the Integrand - U

$$
\mathcal{U}=x_{1} x_{4}+
$$

- Find all connected I-tree graphs by cutting L lines, where L is the number of loops

Construct the Integrand - U

$$
\mathcal{U}=x_{1} x_{4}+x_{1} x_{5}+x_{2} x_{4}+x_{2} x_{5}+x_{3} x_{4}+x_{3} x_{5}+x_{4} x_{5}
$$

- Find all connected I-tree graphs by cutting L lines, where L is the number of loops

Construct the Integrand - F

- Find all 2-tree graphs by cutting L+I lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

Construct the Integrand - F

- Find all 2-tree graphs by cutting L+I lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

Construct the Integrand - F

$-\mathcal{F}=p_{1}^{2} x_{1} x_{4} x_{5}+$

- Find all 2-tree graphs by cutting L+I lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

Construct the Integrand - F

$-\mathcal{F}=p_{1}^{2} x_{1} x_{4} x_{5}+p_{2}^{2} x_{1} x_{2} x_{4}+p_{2}^{2} x_{1} x_{2} x_{5}+p_{3}^{2} x_{2} x_{3} x_{4}+p_{3}^{2} x_{2} x_{3} x_{5}$

$$
+p_{4}^{2} x_{3} x_{4} x_{5}+s_{12} x_{2} x_{4} x_{5}+s_{23} x_{1} x_{3} x_{4}+s_{23} x_{1} x_{3} x_{5}
$$

- Find all 2-tree graphs by cutting L+I lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

The Full Integrand

- The full integrand G after loop momentum integration in D dimensions with N propagators to power ν_{j}

$$
\begin{aligned}
G= & \frac{(-1)^{N_{\nu}}}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \Gamma\left(N_{\nu}-L D / 2\right) \int_{0}^{\infty} \prod_{j=1}^{N} \mathrm{~d} x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{l=1}^{N} x_{l}\right) \frac{\mathcal{U}^{N_{\nu}-(L+1) D / 2}(\vec{x})}{\mathcal{F}^{N_{\nu}-L D / 2}(\vec{x})} \\
& \quad \text { and } N_{\nu}=\sum_{j=1}^{N} \nu_{j}
\end{aligned}
$$

Any Divergences?

$$
G=\frac{(-1)^{N_{\nu}}}{\prod_{j=1}^{N} \Gamma\left(\nu_{j}\right)} \Gamma\left(N_{\nu}-L D / 2\right) \int_{0}^{\infty} \prod_{j=1}^{N} d x_{j} x_{j}^{\nu_{j}-1} \delta\left(1-\sum_{l=1}^{N} x_{1} \frac{\mathcal{U}^{N_{\nu}-(L+1) D / 2}(\bar{x})}{\mathcal{F}_{\nu}^{N_{\nu}-L D / 2}(\bar{x})}\right.
$$

UV sub-divergence

Sector Decomposition

- Problem: Divergences can overlap!

$$
\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y \frac{1}{(x+y)^{2+\epsilon}}=
$$

Sector Decomposition

- Problem: Divergences can overlap!

$$
\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y \frac{1}{(x+y)^{2+\epsilon}}=\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} t \frac{1}{x^{1+\epsilon}(1+t)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} t \int_{0}^{1} \mathrm{~d} y \frac{1}{y^{1+\epsilon}(1+t)^{2+\epsilon}}
$$

Sector Decomposition

- Problem: Divergences can overlap!

$$
\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y \frac{1}{(x+y)^{2+\epsilon}}=\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} t \frac{1}{x^{1+\epsilon}(1+t)^{2+\epsilon}}+\int_{0}^{1} \mathrm{~d} t \int_{0}^{1} \mathrm{~d} y \frac{1}{y^{1+\epsilon}(1+t)^{2+\epsilon}}
$$

- Result:After iterated sector decomposition procedure, dimensionally regulated soft, collinear and UV singularities are factored out Hepp '66, Binoth \& Heinrich '00

Deformation of the Integration Contour

- When computing diagrams with more than one scale, function \mathcal{F} can still vanish

$$
\mathcal{F}_{\text {Bubble }}=m^{2}\left(1+t_{1}\right)^{2}-s t_{1}-i \delta
$$

but a deformation of the integration contour

and Cauchy's theorem can help

$$
\oint_{c} f(t) \mathrm{d} t=\int_{0}^{1} f(t) \mathrm{d} t+\int_{1}^{0} \frac{\partial z(t)}{\partial t} f(z(t)) \mathrm{d} t=0
$$

Operational Sequence of SecDec 2.0

Analytic vs Numerical Approach

	Analytical	Numerical
Pro's	- get result for different kinematics in "no time""	- easier to automate - classes of diagrams can be computed similarly
Con's	- complicated integrands may need approximation every integrand needs to be treated individually	- computation must be redone when changing kinematics - speed vs accuracy

Result for the House

```
***********************************************
***口UTPUT: House h_ ***************************
    point: 3.0 5.0
    ext. legs: 0.0 0.0 0.0 0.0
prop. mass: 0.0 0. 0. 0. 0.
Prefactor=-Exp[-2EulerGamma*eps]
***********************************************
********** }\mp@subsup{\textrm{pps}}{}{\wedge}-3\textrm{coeff}***********************
result =-0.2 + 0 I
error =8.65745e-06 + 7.69808e-06 I
CPUtime (all eps^-3 subfunctions) =0.00867425
********** }\mp@subsup{\textrm{pps}}{}{\wedge}-2 coeff ***********************
result =0.1416138 - 1.256629819413 I
error =0.000112589057259132 + 0.000347590523927221 I
CPUtime (all eps^-2 subfunctions) =0.03597475
********** }\mp@subsup{\textrm{pps}}{}{\wedge}-1 \textrm{coeff}***********************
result =4.48469357326071 + 0.88977832278 I
error =0.00197323555702034 + 0.000693096089967388 I
CPUtime (all eps^-1 subfunctions) =0.30169275
********** }\textrm{eps}\mp@subsup{`}{}{\wedge}\textrm{coeff}***********************
result =-0.955432257069887 + 10.9736953304604 I
error =0.0110823059795104 + 0.0288369973195129 I
CPUtime (all eps^0 subfunctions) =2.0828709
***********************************************
Time taken for decomposition = 1.332223
Total time for subtraction and eps expansion = 7.120933 secs
Time taken for longest subtraction and eps expansion = 2.63507 secs
```


More Results: Non-planar 4-Point Diagram

massless case: Tausk '99

More Results: Non-planar 2-Loop Box Diagram

Summary

- Higher order computations can lead to large corrections
- Integrands can be constructed via topological cuts
- Overlapping divergences can be factorized with the help of sector decomposition
- Dealing with multiple scales, an additional deformation of the integration contour becomes necessary
- SecDec 2.0 is a tool to numerically compute (master) diagrams with arbitrary kinematics

What wasn't mentioned:

- SecDec 2.0 can compute much more (also tensor integrals, infrared divergent subtraction terms for real radiation or other more general functions)

Outlook

- Apply SecDec 2.0 to 2-loop corrections involving several mass scales, e.g. QCD/EW/MSSM corrections
- Improve detection and treatment of problematic kinematic regions, e.g. close to a (leading Landau) singularity
- Improve speed of computation of diagrams

Thank you for your attention.

