Computation of Master Integrals at Higher *Orders* Max-Planck-Institut für Integrals

IMPRSEPPSophia BorowkaMax Planck Institute for Physics, Munich

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Young Scientists Workshop 2012 Ringberg, July 24th 2012

http://secdec.hepforge.org

Outline

- Why are higher order corrections necessary?
- Constructing loop amplitudes from diagrams
- Analyzing divergences
- Analytic vs numerical approach
- SecDec program

The LHC Era has begun...

- We are probing energies which have never been reached at colliders before
- High experimental precision is possible due to high luminosities
- Precise theoretical predictions become necessary

Higgs Production Channels

COMPUTATION OF MASTER INTEGRALS

Higgs Production in Gluon Fusion

Multi-dimensional parameter integrals need to be evaluated which can contain UV, soft and collinear singularities

COMPUTATION OF MASTER INTEGRALS

Higher Order Corrections to the Higgs Production

Harlander & Kilgore '02

SOPHIA BOROWKA

Anastasiou, Melnikov, Petriello '05

In some cases, higher order corrections can make a huge difference!

• Tiziano's talk: @I-loop all master integrals are known

Two and more loops: master integrals need to be found!

SOPHIA BOROWKA

SOPHIA BOROWKA

And make all its columns massless

SOPHIA BOROWKA

SOPHIA BOROWKA

SOPHIA BOROWKA

COMPUTATION OF MASTER INTEGRALS

SOPHIA BOROWKA

• Find all connected 1-tree graphs by cutting L lines, where L is the number of loops

SOPHIA BOROWKA

• Find all connected 1-tree graphs by cutting L lines, where L is the number of loops

SOPHIA BOROWKA

 $\mathcal{U} = x_1 x_4 +$

• Find all connected 1-tree graphs by cutting L lines, where L is the number of loops

SOPHIA BOROWKA

 $\mathcal{U} = x_1 x_4 + x_1 x_5 + x_2 x_4 + x_2 x_5 + x_3 x_4 + x_3 x_5 + x_4 x_5$

• Find all connected I-tree graphs by cutting L lines, where L is the number of loops

SOPHIA BOROWKA

• Find all 2-tree graphs by cutting L+1 lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

SOPHIA BOROWKA

• Find all 2-tree graphs by cutting L+I lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

SOPHIA BOROWKA

• Find all 2-tree graphs by cutting L+1 lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

SOPHIA BOROWKA

• Find all 2-tree graphs by cutting L+1 lines of the graph and multiplying all Feynman parameters, which correspond to the cut propagators, with the incoming momentum flow

SOPHIA BOROWKA

The Full Integrand

• The full integrand G after loop momentum integration in D dimensions with N propagators to power ν_j

$$G = \frac{(-1)^{N_{\nu}}}{\prod_{j=1}^{N} \Gamma(\nu_j)} \Gamma(N_{\nu} - LD/2) \int_{0}^{\infty} \prod_{j=1}^{N} dx_j \ x_j^{\nu_j - 1} \,\delta(1 - \sum_{l=1}^{N} x_l) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}(\vec{x})}{\mathcal{F}^{N_{\nu} - LD/2}(\vec{x})}$$

and $N_{\nu} = \sum_{j=1}^{N} \nu_j$

COMPUTATION OF MASTER INTEGRALS

Any Divergences?

COMPUTATION OF MASTER INTEGRALS

SOPHIA BOROWKA

SOPHIA BOROWKA

 Result: After iterated sector decomposition procedure, dimensionally regulated soft, collinear and UV singularities are factored out Hepp '66, Binoth & Heinrich '00

Sophia Borowka

Deformation of the Integration Contour

• When computing diagrams with more than one scale, function ${\mathcal F}$ can still vanish

$$\mathcal{F}_{\mathsf{Bubble}} = m^2(1+t_1)^2 - s t_1 - i\delta$$

but a deformation of the integration contour

and Cauchy's theorem can help

$$\oint_{c} f(t) dt = \int_{0}^{1} f(t) dt + \int_{1}^{0} \frac{\partial z(t)}{\partial t} f(z(t)) dt = 0$$

SOPHIA BOROWKA

Operational Sequence of SecDec 2.0

COMPUTATION OF MASTER INTEGRALS

Analytic vs Numerical Approach

	Analytical	Numerical
Pro's	 get result for different kinematics in "no time" 	 easier to automate classes of diagrams can be computed similarly
Con's	 complicated integrands may need approximation every integrand needs to be treated individually 	 computation must be redone when changing kinematics speed vs accuracy

SOPHIA BOROWKA

Result for the House

```
point: 3.0 5.0
ext. legs: 0.0 0.0 0.0 0.0
prop. mass: 0.0 0. 0. 0. 0.
Prefactor=-Exp[-2EulerGamma*eps]
******
=-0.2 + 0 I
result
       =8.65745e-06 + 7.69808e-06 I
error
CPUtime (all eps^-3 subfunctions) =0.00867425
=0.1416138 - 1.256629819413 I
result
        =0.000112589057259132 + 0.000347590523927221 I
error
CPUtime (all eps^-2 subfunctions) =0.03597475
result =4.48469357326071 + 0.88977832278 I
        =0.00197323555702034 + 0.000693096089967388 I
error
CPUtime (all eps^-1 subfunctions) =0.30169275
result =-0.955432257069887 + 10.9736953304604 I
        =0.0110823059795104 + 0.0288369973195129 I
error
CPUtime (all eps^0 subfunctions) =2.0828709
Time taken for decomposition = 1.332223
Total time for subtraction and eps expansion = 7.120933 secs
Time taken for longest subtraction and eps expansion = 2.63507 secs
```

COMPUTATION OF MASTER INTEGRALS

Sophia Borowka

More Results: Non-planar 4-Point Diagram

massless case: Tausk '99

COMPUTATION OF MASTER INTEGRALS

More Results: Non-planar 2-Loop Box Diagram

COMPUTATION OF MASTER INTEGRALS

Summary

- Higher order computations can lead to large corrections
- Integrands can be constructed via topological cuts
- Overlapping divergences can be factorized with the help of sector decomposition
- Dealing with multiple scales, an additional deformation of the integration contour becomes necessary
- SecDec 2.0 is a tool to numerically compute (master) diagrams with arbitrary kinematics

What wasn't mentioned:

 SecDec 2.0 can compute much more (also tensor integrals, infrared divergent subtraction terms for real radiation or other more general functions)

SOPHIA BOROWKA

Outlook

- Apply SecDec 2.0 to 2-loop corrections involving several mass scales, e.g. QCD/EW/MSSM corrections
- Improve detection and treatment of problematic kinematic regions, e.g. close to a (leading Landau) singularity
- Improve speed of computation of diagrams

Thank you for your attention.

SOPHIA BOROWKA